
Contents Random Generators Standard Tableaux Special Tableaux

Generating random outranking digraphs
MICS: Algorithmic Decision Theory

Raymond Bisdorff

University of Luxembourg

April 28, 2020

1 / 35

Contents Random Generators Standard Tableaux Special Tableaux

Contents

1. Random performance generators
Beta performance generators
Extended triangular performance generators
Truncated Gaussian generators

2. Random Performance Tableaux
A Standard Random Performance Tableau
Performance discrimination thresholds
Example Python session

3. Special Random Performance Tableaux
Random Cost-Benefit performance tableaux
Random 3 Objectives performance tableaux
Random academic performance tableaux

2 / 35

Contents Random Generators Standard Tableaux Special Tableaux

1. Random performance generators
Beta performance generators
Extended triangular performance generators
Truncated Gaussian generators

2. Random Performance Tableaux
A Standard Random Performance Tableau
Performance discrimination thresholds
Example Python session

3. Special Random Performance Tableaux
Random Cost-Benefit performance tableaux
Random 3 Objectives performance tableaux
Random academic performance tableaux

3 / 35

Beta Performance Generator – 1

• The beta performance generator delivers random performance
measures within a given performance scale following a Beta(α, β)
probability law.

• In the default case, (α = 2.0, β = 2.0), the mode xm is situated in
the middle (50.0) of the performance scale [0.0, 100.0] and the
probabilty is equally distributed on both sides, i.e. xm represents the
median performance, and the standard deviation sd ≈ 15.0.

Contents Random Generators Standard Tableaux Special Tableaux

Beta Performance Generator – 2

• We consider two variants with equal standard deviation
sd = 15 :
• low performances: xm = 25 (α = 2.0, β = 1.0

1.0−xm),
• high performances: xm = 75 (α = 1.0

1.0−xm , β = 2.0),

5 / 35

Triangular Performance Generator – 1

• The triangular performance generator delivers random performance
measures within a given performance scale following an extended
triangular alertT r(xm, r) probability law with mode xm and
probability repartition r lower or equal xm.

• In the default case, the mode xm is situated in the middle (50.0) of
the performance scale and the probabilty is equally distributed on
both sides, i.e. r = 0.5 and xm represents the median performance
measure.

Contents Random Generators Standard Tableaux Special Tableaux

Triangular Performance Generator – 2

• We consider two variants with fixed repartition r = 0.5:
• low performances: xm = 30,
• high performances: xm = 70,

See the Digraph3 <RandomNumbers> module.

7 / 35

Truncated Gaussian Performance Generator – 1

• The truncated Gaussian performance generator delivers random
performance measures within a given performance scale following a
truncated N (µ, σ) probability law with mean µ and standard
deviation σ.

• In the default case, the mode xm is situated in the middle (50.0) of
the performance scale and the standard deviation is a fourth (25.0)
of the scale scope.

Contents Random Generators Standard Tableaux Special Tableaux

Truncated Gaussian Performance Generator – 2

• We consider two variants:
• low performances: xm = 30,
• high performances: xm = 70,

9 / 35

Contents Random Generators Standard Tableaux Special Tableaux

1. Random performance generators
Beta performance generators
Extended triangular performance generators
Truncated Gaussian generators

2. Random Performance Tableaux
A Standard Random Performance Tableau
Performance discrimination thresholds
Example Python session

3. Special Random Performance Tableaux
Random Cost-Benefit performance tableaux
Random 3 Objectives performance tableaux
Random academic performance tableaux

10 / 35

A Standard Random Performance Tableau
• 20 decision actions; low variant: 13; high variant: 50;

• 13 criteria; low variant: 7; high variant: 21;

• All criteria are by default equi-significant (same weight 1);
uniform random weights may be generated within a givn
weight scale;

• All criteria use a same cardinal performance measurement
scale; from 0.0 to 100.0 by default: user provided scale limits
may be given;
• Individual performances are by default generated with a beta

law: Beta(2, 2). Two variants are provided:
• a uniform law: U(a, b) with a and b the performance

measurement scale limits;
• an extended triangular law: T (xm, r), where xm is the mode

and r the percentile of xm.

See the Digraph3 RandomPerformanceTableau class
description

Contents Random Generators Standard Tableaux Special Tableaux

Fixed Discrimination Thresholds

• On each criterion, the default discrimination thresholds are
chosen in percentages of the amplitude of the criterion
performance measurement scales:
• indifference threshold equals 2.5% of the potential

performance amplitude;
• preference threshold equals 5.0% of the potential performance

amplitude;
• veto threshold equals 80.0% of the potential performance

amplitude.

• Note: Ordinal criteria admit by default solely a preference
threshold of one unit.

12 / 35

Contents Random Generators Standard Tableaux Special Tableaux

The Digraph3 <RandomPerformanceTableau> class
Example Python session:

>>> from randomPerfTabs import RandomPerformanceTableau

>>> t = RandomPerformanceTableau(numberOfActions=13,\

numberOfCriteria=7,weightDistribution=’random’,\

weightScale=(0.0,10.0),seed=100,\

missingDataProbability=0.03)

>>> t

------- PerformanceTableau instance description ------

Instance class: RandomPerformanceTableau

Seed : 100

Instance name : randomperftab

Actions : 13

Criteria : 7

Attributes : [’weightPreorder’,’BigData’,’criteria’,

’missingDataProbability’,’commonScale’,

’evaluation’,’digits’,’name’,’sumWeights’,

’commonMode’,’randomSeed’,’actions’]

>>> t.showHTMLPerformanceTableau(Transposed=True,\

title=’Standard performance tableau’)

13 / 35

Contents Random Generators Standard Tableaux Special Tableaux

On each criterion g1 to g7, the performances of the seven decision alternatives
are generated on a common 0.00 to 100.00 statisfaction scale. The light green
marked cells indicate the best performance obtained on this criterion, whereas
the light red marked cells indicate the weakestt performance obtained on this
criterion. On criterion g1, for instance, alternative a12 show the weakest and
a13 the best performance.

Notice by the way the three missing evaluations: one for alternative a1 on

criterion g5, one for a03 on criterion g6 and one for a09 on criterion g2.

14 / 35

Contents Random Generators Standard Tableaux Special Tableaux

<RandomPerformanceTableau> class

Example Python session –continue:

>>> t.showCriteria(IntegerWeights=True)

---- criteria -----

g1 ’RandomPerformanceTableau() instance’

Scale = (0.0, 100.0)

Weight = 8

Threshold ind : 2.50 + 0.00x ; percentile: 0.06

Threshold pref : 5.00 + 0.00x ; percentile: 0.09

Threshold veto : 80.00 + 0.00x ; percentile: 1.0

...

...

On criterion g1, 6% of the performance differences are insignificant, 9% are below the
preference discrimination threshold, and no considerable performance difference is
observed.

We may visualize a ranked heatmap of the performance tableau with the

t.showHTMLPerformanceHeatmap method.

15 / 35

Contents Random Generators Standard Tableaux Special Tableaux

Example Python session –continue:

>>> t.showHTMLPerformanceHeatmap(Transposed=True,\

pageTitle=’Ranked heatmap of the decision alternatives’,\

rankingRule=’Copeland’,colorLevels=5)

The criteria appear ordered by decreasing significance weight, whereas the decision

alternatives are ranked following the Copeland ranking rule. See the Digraph3 tutorial

on ranking with multiple incommensurable criteria.
16 / 35

Contents Random Generators Standard Tableaux Special Tableaux

1. Random performance generators
Beta performance generators
Extended triangular performance generators
Truncated Gaussian generators

2. Random Performance Tableaux
A Standard Random Performance Tableau
Performance discrimination thresholds
Example Python session

3. Special Random Performance Tableaux
Random Cost-Benefit performance tableaux
Random 3 Objectives performance tableaux
Random academic performance tableaux

17 / 35

Contents Random Generators Standard Tableaux Special Tableaux

Random Cost-Benefit Performance Tableau – I

• 20 decision actions; low variant: 13; high variant: 50.

• 13 criteria; low variant: 7; high variant: 20.

• A criteria is with equal probability either to be minimized
(cost criteria) or to be maximized (benefit criteria).

• All criteria either support an ordinal or a cardinal performance
scale; the cost criteria being mostly cardinal (2/3) and the
benefit ones mostly ordinal (2/3).

• Ordinal performances are represented on integer scales:
{1, 2, ..., 10}.
• Cardinal performances are represented on a decimal scale:

[0.0; 100.0] with a precision of 2 digits.

18 / 35

Contents Random Generators Standard Tableaux Special Tableaux

Random Cost-Benefit Performance Tableau – II

• In the Cost-Benefit model the decision actions are divided
randomly into three categories: cheap, neutral, advantageous.
• An action is called:

• cheap when the performances are generated with
T (xm = 30, r = 0.5) (default), N (µ = 30, σ = 25), or
Beta(α = 2.62203, β = 5.8661), i.e. (xm = 25, sd = 15).

• advantageous when the performances are generated with
T (xm = 70, r = 0.5) (default), N (µ = 70, σ = 25), or
Beta(α = 5.8661, β = 2.62203), i.e. (xm = 75, sd = 15)

• and neutral when the performances are generated with
T (xm = 50, r = 0.5) (default), N (µ = 50, σ = 25), or
Beta(α = 5.055, β = 5.055), i.e. (xm = 50, sd = 15)

19 / 35

Contents Random Generators Standard Tableaux Special Tableaux

Random Cost-Benefit Performance Tableau – II

Fixed Percentile Discrimination Thresholds:
On each cardinal criterion, the default performance discrimination
thresholds are chosen such that the:

• indifference threshold equals the percentile 5 of all generated
performance differences;

• preference threshold equals the percentile 10 of all generated
performance differences;

• veto threshold equals the percentile 95 of all generated
performance differences.

20 / 35

<RandomCBPerformanceTableau> class – I

>>> from randomPerfTabs import RandomCBPerformanceTableau

>>> t = RandomCBPerformanceTableau(numberOfActions=7,\

numberOfCriteria=11,commonPercentiles=\

{’ind’:0.05, ’pref’:0.10 , ’veto’:0.95},\

missingDataProbability=0.05,seed=109)

>>> t.showCriteria(IntegerWeights=True)

c1 ’Costs/random cardinal cost criterion’

Scale = (0.0, 100.0)

Weight = 7

Threshold ind : 7.64 + 0.00x ; percentile: 0.048

Threshold pref : 8.11 + 0.00x ; percentile: 0.14

Threshold veto : 62.25 + 0.00x ; percentile: 0.95

...

b2 ’Benefits/random ordinal benefit criterion’

Scale = (0, 10)

Weight = 4

...

In this example we notice, for instance, a cardinal Costs criterion c1 of weight 7 with

default performance discrimination thresholds and an ordinal Benefits criterion b2 of

weight 4.

<RandomCBPerformanceTableau> class – II

Continue –

>>> t.showActions()

----- show decision action --------------

key: a1

short name: a1n

name: random neutral decision action

key: a2

short name: a2c

name: random cheap decision action

...

key: a5

short name: a5a

name: random advantageous decision action

...

>>> t.showHTMLPerformanceTableau(\

title=’Cost-Benefit Performance Tableau’)

Contents Random Generators Standard Tableaux Special Tableaux

The sum of weights of the Benefits criteria (7 × 4 = 28) equals the sum of

weights of the Costs criteria (4 × 7 = 28). We observe 3 cheap actions (a2, a6,

a7), three neutral actions (a1, a3, a4) and one advantageous action (a5). As

costs must be mimized, the performances registered on the Costs criteria are all

negative. Cheap actions a6 and a7 show five, respectively four weakest

performances, whereas neutral action a3 shows three best performances.
23 / 35

The random outranking digraph

>>> from outrankingDigraphs import BipolarOutrankingDigraph

>>> g = BipolarOutrankingDigraph(t,Normalized=True)

>>> g.showRelationTable()

>>> # strict(codual) outranking digraph drawing

>>> (~(-g)).exportGraphViz(bestChoice=[’a2’,’a3’,’a4’],\

worstChoice=[’a5’,’a7’])

Contents Random Generators Standard Tableaux Special Tableaux

Generating random public policies
• we consider three decision objectives: economical

aspects,environmental aspects and societal aspects.

• Every performance criteria is affected randomly to one of the
three objectives.

• The three objectives are equally important and the criteria in
each objective are equally significant.

• Each random potential public policy is allocated on each
objective to one of three performance categories: low
performances (−), medium performances (∼) or high
performances (+).

• When generating now the performances of a policy on a
criterion, the random generator is modulated following the
performance profile of the policy respective to each decision
objective.

25 / 35

<Random3ObjectivesPerformanceTableau> class

>>> from randomPerfTabs import \

Random3ObjectivesPerformanceTableau

>>> t = Random3ObjectivesPerformanceTableau(\

numberOfActions=7,numberOfCriteria=13,seed=100)

>>> t.showObjectives()

------ show objectives -------

Eco: Economical aspect

ec01 criterion of objective Eco 24

ec04 criterion of objective Eco 24

...

Total weight: 72.00 (3 criteria)

Soc: Societal aspect

so02 criterion of objective Soc 12

so05 criterion of objective Soc 12

...

...

Total weight: 72.00 (6 criteria)

Env: Environmental aspect

en03 criterion of objective Env 18

en08 criterion of objective Env 18

...

Total weight: 72.00 (4 criteria)

>>> ...

<Random3ObjectivesPerformanceTableau> class

Continue –

>>> t.showActions()

----- show decision action --------------

key: p1

short name: p1

name: random decision action Eco+ Soc~ Env~

profile: {’Eco’:’good’, ’Soc’:’fair’, ’Env’:’fair’}

key: p2

short name: p2

name: random decision action Eco+ Soc- Env~

profile: {’Eco’:’good’, ’Soc’:’weak’, ’Env’:’fair’}

...

key: p6

short name: p6

name: random decision action Eco- Soc~ Env~

profile: {’Eco’:’fair’, ’Soc’:’fair’, ’Env’:’good’}

...

>>> t.showHTMLPerformanceHeatmap(\

pageTitle=’Performance heatmap of random public policies’,\

colorLevels=5,Correlations=True)

Contents Random Generators Standard Tableaux Special Tableaux

The performance criteria are ordered in decreasing marginal correlation with

the default ’NetFlows’ ranking of the seven potential public policies. Overall

best performing policy appears to be policy p6, follwed by p2. Weakest policy

is p3. The three criteria, supporting the economic decision objective (ec07,

ec04 and ec01), appear most correlated with the proposed ranking.

28 / 35

The random outranking digraph

>>> from outrankingDigraphs import BipolarOutrankingDigraph

>>> g = BipolarOutrankingDigraph(t,Normalized=True)

>>> g.showHTMLRelationTable()

>>> # strict (codual) outranking digraph drawing

>>> (~(-g)).exportGraphViz(bestChoice=[’p2’,’a6’],\

worstChoice=[’p3’,’p7’])

Contents Random Generators Standard Tableaux Special Tableaux

Random academic performance tableaux – I

The randomPerfTabs.RandomAcademicPerformanceTableau class generates
temporary performance tableaux with random grades for a given number of students
in different courses.
Parameters:

• Number of students and number of Courses,

• weightDistribution := equisignificant — random (default),

• weightScale := (1, 1 — numberOfCourses (default when random)),

• IntegerWeights := Boolean (True = default),

• commonScale := (0,20) (default), ndigits := 0,

• WithTypes := Boolean (False = default),

• commonMode := (‘triangular’,xm=14,r=0.25) (default),

• commonThresholds := ‘ind’:(0,0), ‘pref’:(1,0) (default),

• missingDataProbability := 0.0 (default).

30 / 35

Contents Random Generators Standard Tableaux Special Tableaux

Random academic performance tableaux – II

When parameter WithTypes is set to True, the students are
randomly allocated to one of the four categories: weak (1/6), fair
(1/3), good (1/3), and excellent (1/3), in the bracketed
proportions.
In the default 0-20 grading range, the random grading range of a
weak student is 0-10, of a fair student 4-16, of a good student
8-20, and of an excellent student 12-20.
The random grading generator follows a double triangular
probablity law with mode (xm) equal to the middle of the random
range and median repartition (r = 0.5) of probability each side of
the mode (see the documentation of randomNumbers module).

31 / 35

<RandomAcademicPerformanceTableau> class

>>> from randomPerfTabs import\

RandomAcademicPerformanceTableau

>>> t = RandomAcademicPerformanceTableau(\

numberOfStudents=13,numberOfCourses=7,\

missingDataProbability=0.03,\

WithTypes=True, seed=100)

>>> t

------- PerformanceTableau instance description ------

Instance class: RandomAcademicPerformanceTableau

Seed : 100

Instance name : randstudPerf

Actions : 13

Criteria : 7

Attributes : [’randomSeed’, ’name’, ’actions’,

’criteria’, ’evaluation’, ’weightPreorder’]

>>> t.showHTMLPerformanceHeatmap(Transposed=True,\

colorLevels=5,ndigits=0)

Contents Random Generators Standard Tableaux Special Tableaux

The Courses (criteria) appear again ordered by decreasing significance weight,

whereas the students are ranked following the ’Netflows’ (default) ranking rule

with student a06 first-ranked and student s13 last-ranked.

33 / 35

The random outranking relation

>>> from outrankingDigraphs import BipolarOutrankingDigraph

>>> g = BipolarOutrankingDigraph(t,Normalized=True)

>>> g.showHTMLRelationTable()

The best choice recommendation

>>> g.showBestChoiceRecommendation()

Rubis choice recommendation(s)

(in decreasing order of determinateness)

Credibility domain: [-1.00,1.00]

=== >> potential best student(s)

* choice : [’s06’]

independence : 1.00

dominance : 0.38

absorbency : -1.00

covering (%) : 100.00

determinateness (%) : 76.92

- most credible action(s) = { ’s06’: 0.56, }

Condorcet winner

=== >> potential weakest students(s)

* choice : [’s11’, ’s13’]

independence : 0.31

dominance : -0.81

absorbency : 0.44

covered (%) : 95.45

determinateness (%) : 81.49

- most credible action(s) = { ’s13’: 0.69, ’s11’: 0.31, }

