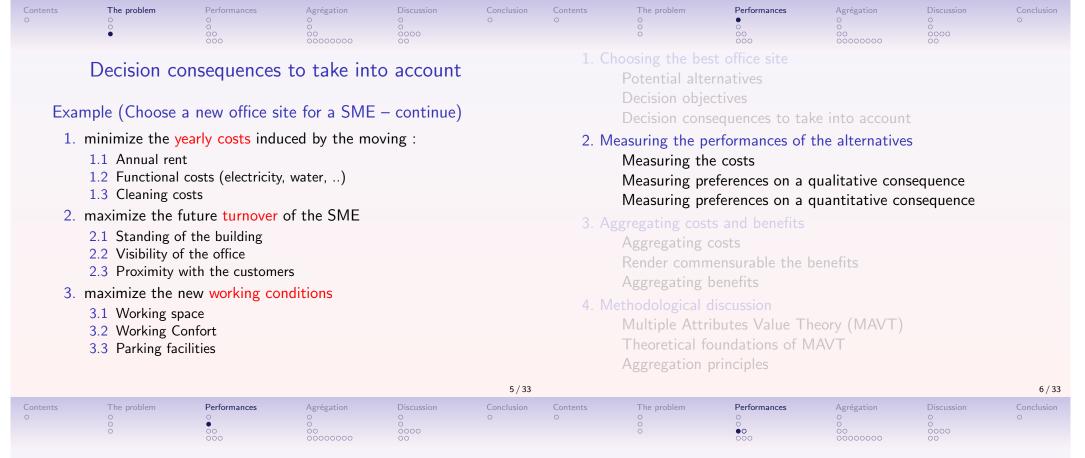


Potential alternatives

Example (Choose a new office site for a SME)

- A SME specialized in printing and copy services has to move into new offices.
- The CEO of the SME has gathered seven potentials sites : Site
 Code Annual rent


Avenue de la liberté	(A)	30 000 €
Bonnevoie	(B)	15 000 €
Cessange	(C)	5 000 €
Dommeldange	(D)	12 000 €
Esch-Belval	(E)	30 000 €
F entange	(F)	15 000 €
Avenue de la G are	(G)	10 000 €

Decision objectives

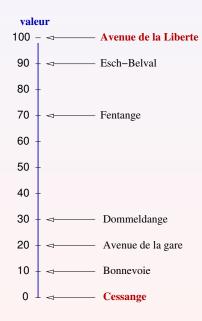
Example (Choose a new office site for a SME – continue)

The CEO has identified three objectives to guide the choice of the new site. He wishes to :

- 1. minimize the yearly costs induced by the moving,
- 2. maximize the future turnover of the SME,
- 3. maximize the new working conditions.

Example (Choose a new office site for a SME – continue) Annual total renting, functioning and cleaning costs (in \in) :

alternative	Rent	Cleaning	Functional
Avenue de la liberté	30 000	3 000	2 000
Bonnevoie	15 000	2 000	800
Cessange	5 000	1 000	700
Dommeldange	12 000	1 000	1 100
Esch-Belval	30 000	2 500	2 300
F entange	15 000	1 000	2 600
Avenue de la G are	10 000	1 100	900


Measuring preferences on a qualitative consequence

The CEO of the SME may rank the seven potential sites from the best to the worst from the point of view of the standing of the building :

rank	alternative	The (
1st	Avenue de la liberté	vited
2nd	Esch-Belval	sites a
3rd	Fentange	that tl
4th	Dommeldange	presen
5th	Avenue de la G are	in star
6th	Bonnevoie	
7th	Cessange	the po

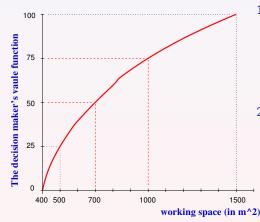
The CEO is furthermore invited to place the individual ites along a 0–100 axis such hat the numerical positions represent the apparent differences in standing he observes between he potential site buildings.

Measuring preferences on a qualitative consequence

Positioning of the potential sites :

- A grade of 100 is given to the best site and a grade of 0 is given to the worst site.
- 2. The CEO then positions the other sites such that the numerical positions represent the apparent differences in standing he observes between the potential site buildings.

Measuring preferences on a quantitative consequence

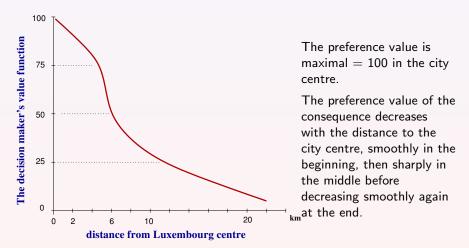

Performances

00

Let us now consider a qualitative consequence : working space, contributing to the evaluation of the performance of an alternative to objective : maximize working conditions.

alternative	Working space (in <i>m</i> ²)	
Avenue de la liberté Bonnevoie Cessange Dommeldange Esch-Belval Fentange Avenue de la Gare	1000 550 400 800 1500 400 700	An increasae from 500 to 1000 m^2 is very attractive. The same increase from 1000 to 1500 m^2 is however not anymore so attractive.

Measuring preferences on a quantitative consequence


Here the conversion the CEO is proposing.

- 1. A working space of 700 m^2 is considered to be situated right in the middle between the maximum (1500 $m^2 = 100$ pts) and the minimum available surface (400 $m^2 = 0$ pts).
- 2. A working space of 1000 m^2 is considered to be situated right in the middle between the previous middle $(700m^2 = 50)$ pts) and the maximum available surface 2) (1500 $m^2 = 100$ pts).

The preference value of the working surface thus becomes an interval scale.

Measuring preferences on a quantitative consequence

A similar procedure allows to measure the preference value of the customers proximity consequence :

1. Choosing the best office site

Potential alternatives Decision objectives Decision consequences to take into account

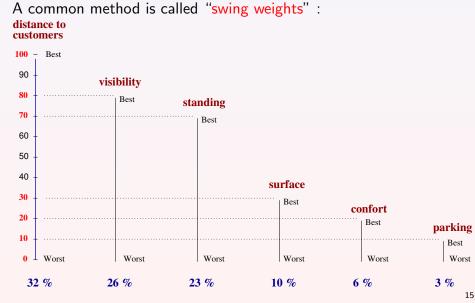
2. Measuring the performances of the alternatives

Measuring the costs

Measuring preferences on a qualitative consequence Measuring preferences on a quantitative consequence

Agrégation

3. Aggregating costs and benefits


Aggregating costs Render commensurable the benefits Aggregating benefits

4. Methodological discussion

Multiple Attributes Value Theory (MAVT) Theoretical foundations of MAVT Aggregation principles

Weighing the benefits

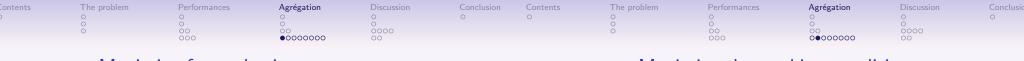
Aggregating costs

Agrégation

All the costs categories taken into account : rent, cleaning and functional, may simply be summed up, as they are all expressed on the same commensurable preference scale, i.e. annual amounts of Euros.

site	Rent	Cleaning	Functional	Total
Avenue de la liberté	30 000	3 000	2 000	35 000
Bonnevoie	15 000	2 000	800	17 800
Cessange	5 000	1 000	700	6 700
Dommeldange	12 000	1 000	1 100	14 100
Esch-Belval	30 000	2 500	2 300	34 800
Fentange	15 000	1 000	2 600	18 600
Avenue de la G are	10 000	1 100	900	12 000

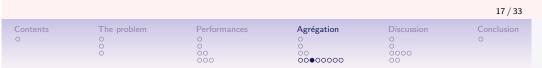
14/33


Weighing the benefits – continue

Comment

- The consequence : customer proximity is considered to be the most important consequence.
- The regret to switch from the best to the worst on the consequence visibility is judged to be 80% of the regret to switch from the best to the worst on the most important consquence.
- These decreasing regret percentages (80%, 70%, etc) are then normalised on a 0 to 100 scale.

15 / 33


13/33

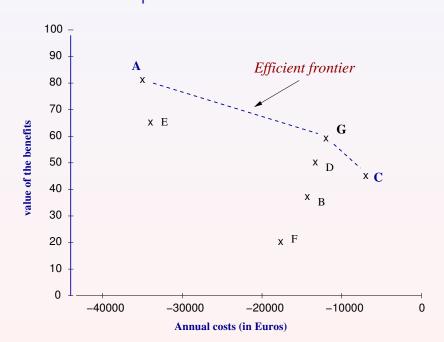
Maximize future business turnovers

The performance of the potential alternatives along this objective results from the aggregation of the following consquences : standing, visibility, and customer proximity :

concod	weight	Alternatives						
conseq.		A	В	С	D	E	F	G
standing	23 %	100	10	0	30	90	70	20
visibility	26 %	60	80	70	50	60	0	100
proximity	32 %	100	20	80	70	40	0	60
total	81 %	70.6	29.5	43.8	42.3	49.1	16.1	49.8

Performances wrt the three objectives

Rank	Costs	Turnover	Work. Cond.	Total Benefit
1st	C (6 700 €)	A (70.6)	E (15.7)	A (80.8)
2nd	G (12 000 €)	G (49.8)	G (10.4)	E (64.8)
3rd	D (14 100 €)	E (49.1)	A (10.2)	G (60.2)
4th	B (17 800 €)	C (43.8)	D (10)	D (52.3)
5th	F (18 600 €)	D (42.3)	B (9.9)	C (47.4)
6th	E (34.800 €)	B (29.5)	F (4.8)	B (39.4)
7th	A (35 000 €)	F (16.1)	C (3.6)	F (20.9)


Maximize the working conditions

The performance of the potential alternatives along this objective results from the aggretaion of the following consequences : working space, comfort, parking facilities :

conseq.	weight	Alternatives						
		А	В	С	D	Е	F	G
space	10 %	75	30	0	55	100	0	50
comfort	6 %	0	100	10	30	60	80	50
parking	3 %	90	30	100	90	70	0	80
total	19 %	10.2	9.9	3.6	10	15.7	4.8	10.4

How to compensate between costs and benefits?

18/33

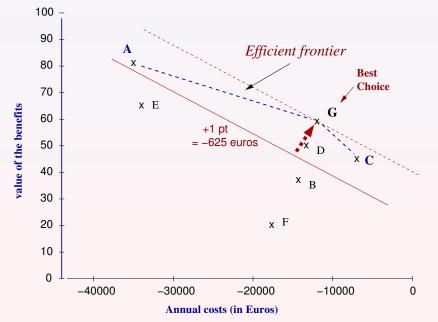
How to compensate between costs and benefits?

How to compensate between costs and benefits?

Comment

- Three sites : Avenue de la liberté (A), Avenue de la Gare (G) et Cessange (C) appear non dominated. They represent potential candidates for the best choice.
- Consider first switching from alternative C to alternative G. We notice an increase in benefits from 47.4 to 60.2 points, whereas the costs increase consists in 5 300€. The marginal increase in benefits is hence 5300/12.8 = 414€.

How to compensate between costs and benefits? – continue


Example (Evaluate the marginal benefit increase in Euros)

- The decision maker is asked how much he would agree to invest in order to increase the standing of the new office from the worst to the best.
- Suppose he declares that he would for this purpose spend up 15 000€.
- The consequence "standing" representing 23% of the value of the benefits, the decision maker is thus ready to invest 15 000€ for getting an increase of 23 points in the benefits. He is hence ready to invest 652€ per point.
- On this base, the best choice is given with alternative Avenue de la Gare (G).

Comment

- Similarly, switching from alternative G to alternative A increases the benefits by 20.6 points and the costs by 23 000€. The marginal increase in benefits costs here 23000/20.6 = 1117€.
- If the CEO considers that a benefit point is worth :
 - less than 414€ he will prefer the site Cessange (C),
 - between 414€ and 1117€ he will prefer the site Avenue de la Gare (G),
 - more than 1117€ he will prefer the site Avenue de la liberté (A).

How to compensate between costs and benefits? – continue

1. Choosing the best office site

Potential alternatives Decision objectives Decision consequences to take into account

2. Measuring the performances of the alternatives

Measuring the costs

Measuring preferences on a qualitative consequence Measuring preferences on a quantitative consequence

Discussion

3. Aggregating costs and benefits

Aggregating costs Render commensurable the benefits Aggregating benefits

4. Methodological discussion

Multiple Attributes Value Theory (MAVT) Theoretical foundations of MAVT Aggregation principles

Multiple Attributes Value Theory (MAVT)

Discussion

0000

Comment

- In this lecture we illustrate a best choice decision algorithm which consists in constructing a commensurable numerical representation of all the consequences to be taken into account for choosing the best alternative.
- The Multiple Attribute Value Theory (MAVT), was initiated in 1976 by two American scientists : Ralph Keeney and Howard Raiffa.

Principles of MAVT

Principle (Complete comparability)

The potential alternatives' performances may be numerically measured on all the consequences, the objectives, and globally (after aggregation).

Comment

- We supposed for instance that the increase in benefits switching from site Cessange (C) to site Avenue de la Gare (G), was greater than the one from site Bonnevoie (B) to site Cessange (C).
- It may however happen that the decision maker is not able (not available for instance) to give a precise numerical value to such eventualities.

Principles of MAVT – continue

Principle (Additivity)

If the decision maker prefers alternative A over alternative B, and alternative B over alternative C, then the difference in preference between A and C has to be greater than the differences between A and B, and, between B and C.

Comment

- The differences in preference have to respect the rankings of the alternatives on each consequence, on each objective and globally.
- The appreciation of a preference difference between two alternatives must result from the comparison of their respective values on each consequence.

Principles of MAVT – continue

Discussion

0000

Principle (Linear (geometrical) perception of the performances)

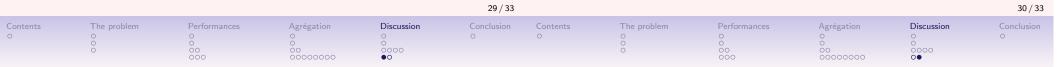
The decision maker is always able to cut into half the difference in preference he observes when considering a performance difference on a consequence.

Comment

- Concerning the working space for instance, the CEO was able to say that the increase from 400 to 700 m² is équivalent in preference to an increase in value from 700 to 1500m².
- This principle is commonly not verified with essentially qualitative consequences like the standing of the office building.

Principles of MAVT – continue

Discussion


0000

Principle (Finite value scales)

No alternative may admit an infinite positive nor negative value.

Comment

• All performances being in principle commensurable, there may not be any infinitely valued consequence.

Principles of MAVT – continue

Principle (Transitivity)

If the decision maker prefers alternative A over alternative B, and alternative B over alternative C, then he must prefer alternative A over alternatice C.

Comment

- This principle is essential when representing preference with numerical values. All common number sets (integers, rationals, floats, reals, etc.) verify this transitivity principle.
- Aggregating global preferences based on pairwise majority margins à la Condorcet does however not satify this principle.

Principles of MAVT – continue Principle (Mutual preferential independance between the consequences taken into account)

Each consequence has to measure a specific performance which must be independent from the performances on the other consequences in order to avoid overlapping (and hence overweighing) of the performance in the global aggregation.

Comment

- For instance, the consequence office visibility may only become relevant when the proximity with the customers is sufficiently small. Otherwise, this consequece should not count.
- This principle is usually not verified when evaluating consequences from common socio-ecomonic indicators.
- However, one may control this principle with an ad hoc construction of relevant consequences measures.

Concluding on MAVT

- MAVT points to the necessity to follow a consistent and systematic method for evaluating alternatives on multiple attributes in a choice decision problem.
- MAVT may take into account quantitative costs and qualitative benefits.
- It is a quantitative (value measured) and transparent (explicit algorithm) best choice method.
- MAVT requires, however, complete comparability, commensurability, transitivity, etc, all principles that may be difficult to verify in a given real decision problem.

33 / 33