On ranking from different opi

•**O** 00 000 Types of ranking rules

A classification of ranking rules 0 0 00 n ranking from different opinion:

Types of ranking r oo oooo oooooo

Content

Algorithmic Decision Theory Lecture 3: On consensual social ranking

Raymond Bisdorff

FSTC - CSC/ILIAS

20 janvier 2021

1. On ranking from different opinions Definition of the ranking problem

Linear Rankings Majority margins

2. Types of ranking rules

Borda type rules Condorcet : Ranking-by-choosing rules Condorcet : Ranking-by-scoring rules

3. A classification of ranking rules

Condorcet-consistency *M*-ordinality and *M*-invariance Which ranking rule should we use?

		1 / 36			2 / 36
nions	Types of ranking rules	A classification of ranking rules	On ranking from different opinions	Types of ranking rules	A classification of ranking rules
	00	0	0	00	0
	0000	0 00	00	0000	0

Definition of the ranking problem

A ranking rule is a procedure which aggregates marginal, ie individual voters, experts or criteria based, rankings into a global *consensus ranking* which combines the available preferential information *best* from the marginal viewpoints.

FIGURE - 1. Computing a consensual ranking

>>> from	votir	ngProfi	les im	port :	*			
>>> v = 1	Linear	Voting	Profil	e('exa	amplei	l')		
>>> v.sho	owLine	earBallo	ots()					
voters	n	narginal	l cand	idate	's			
(weight))	3	rankin	gs				
v1(8):	['a	a', 'c'	, 'b',	'e',	'd']			
v2(7):	['∈	e', 'b'	, 'c',	'd',	'a']			
v3(4):	['c	i', 'c'	, 'b',	'e',	'a']			
v4(4):	['t	o', 'd'	, 'e',	'с',	'a']			
v5(2):	['o	c', 'd'	, 'b',	'e',	'a']			
# voters	s: 25							
>>> v.sho	owRank	Analys	isTabl	e()				
	Bord	la rank	analy	sis ta	ableau	ı		
candi-	I	candida	ate x	rank		1	Borda	a
dates	1	2	3	4	5	Ι	score	average
'b'	4	7	14	0	0		60	2.40
'c'	2	12	7	4	0		63	2.52
'e'	7	0	4	14	0		75	3.00
'd'	4	6	0	7	8		84	3.36
'a'	8	0	0	0	17		93	3.72

A classification of ranking rules 0 00 On ranking from different opinions

ŏŏ

Types of ranking rule 00 0000 000000 000000

6/36

Linear Rankings

- A linear ranking $R = [a_1, a_2, ..., a_n]$ is a list of *n* objects (a set X of candidates or decision alternatives) where the indexes $1 \le i < j \le n$ represent a complete preferential '*a_i* better than *a_j*' relation without ties $(a_i > a_j)$. The reversed list is called a *linear order*.
- A linear ranking R may be modelled with the help of a bipolar characteristic function r(a_i > a_j) ∈ {-1, 0, 1} where :

$$r(a_i > a_j) = egin{cases} +1 ext{ if } i < j, \ -1 ext{ if } i > j, \ 0 ext{ otherwise.} \end{cases}$$

 Notice that reversing a ranking R is achieved by negation : r(a_i ≥ a_j) = -r(a_i > a_j) which characterizes the corresponding linear order.

		,
In ranking from different opinions	Types of ranking rules	A classification of ranking rules
	00 0000	0
00	000000 00000	00 000000

Majority margins

The majority margin M(x, y) counts the *net advantage* of a candidate x over a candidate y. With k voters :

$$M(x,y) = \sum_{k=1}^{n} (r(x >_{k} y)) + \sum_{k=1}^{n} (r(y \neq_{k} x))$$
$$= \sum_{k=1}^{n} [r(x >_{k} y) - r(y >_{k} x)]$$

If the profile u consist of complete linear rankings, then :

$$M(x,x) = 0$$
 and $M(x,y) + M(y,x) = 0.$

In this case, indeed :

$$\sum_{k=1}^{n} (r(x >_{k} y)) = n - \sum_{k=1}^{n} (r(y >_{k} x))$$

Properties of linear rankings

- A linear ranking $R = [a_1, a_2, ..., a_n]$ is
 - a *transitive* relation, $\forall i, j, k = 1..n$:

$$\left[\left(r(a_i > a_j) = +1\right) \land \left(r(a_j > a_k) = +1\right)\right] \Rightarrow (r(a_i > a_k) = +1);$$

• a *complete* relation, $\forall i \neq j$:

$$r((a_i > a_j) \lor (a_i > a_j)) = \max(r(x_i > x_j), r(x_j > x_i)) = +1;$$

• an *irreflexive* relation, $\forall i$:

$$r(a_i > a_i) = 0$$
 /* We ignore the reflexive relations */.

• A ranking with ties –a collection of ordered equivalence classes– is called a weak ranking; its *converse* is called a *preorder*, and its *negation* is called a weak order.

Example (Computing majority margins)

```
>>> v
               : LinearVotingProfile
Instance class
               : example1
Instance name
# Candidates: 5, # Voters: 5
>>> v.showLinearBallots()
 coalition
               marginal candidate's
  (weight)
                    rankings
   v1(8): ['a', 'c', 'b', 'e', 'd']
   v2(7): ['e', 'b', 'c', 'd', 'a']
   v3(4): ['d', 'c', 'b', 'e', 'a']
   v4(4): ['b', 'd', 'e', 'c', 'a']
   v5(2): ['c', 'd', 'b', 'e', 'a']
Total number of voters: 25
>>> from votingProfiles import CondorcetDigraph
>>> cd = CondorcetDigraph(v)
>>> cd.showMajorityMargins()
* ---- Relation Table -----
M(x,y) | 'a' 'b' 'c' 'd' 'e'
  'a'
                    -9
                        -9
                             -9
  'b'
                    -3
                        13
                            11
  'c'
               3
                    0
                         9
                              3
 'd'
          g
            -13
                   -9
                         0
                              -5
 'e'
                   -3
                         5
                              0
          9
            - 11
Valuation domain: [-25;+25]
```

The majority relation C(x, y) checks if a majority margin M(x, y) is *positive*, ie if there is a majority of rankings which rank candidate x before candidate y :

 $C(x,y) = \begin{cases} +1 & \text{if } M(x,y) > 0\\ -1 & \text{if } M(x,y) < 0\\ 0 & \text{otherwise.} \end{cases}$

Rubis Python Server (graphviz), R. Bisdorff, 2008

On ranking from different opinions 00 00 000

Types of ranking rules ●0 ○○○○ ○○○○○

On ranking from different opinions

1. On ranking from different opinions Definition of the ranking problem Linear Rankings

Majority margins

2. Types of ranking rules

Borda type rules Condorcet : Ranking-by-choosing rules Condorcet : Ranking-by-scoring rules

3. A classification of ranking rules

Condorcet-consistency *M*-ordinality and *M*-invariance Which ranking rule should we use?

On ranking from different opinions 00 00 000	Types of ranking rules O● OOOOO OOOOOO OOOOOO	A classification of ranking rules 0 00 00 000000	On ranking from different opinions 00 000	Types of ranking rules ○ ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	A classification of ranking rules 0 00 00 000000
	00000	000000		00000	000000

Ranking rule

- A profile $u = \{R_1, R_2, ..., R_q\}$ is a list of q linear rankings.
- This profile u is the input of a ranking rule : $u \to f(u)$.
- The output of a ranking rule can be :
 - one (SLR) or several (MLR) linear rankings;
 - one (SWR) or several (MWR) weak rankings (with ties).
- We present hereafter three types of ranking rules :
 - 1. Rank analysis based ranking-by-scoring rules (Borda type);
 - 2. Pairwise majority margins based rules (Condorcet type) :
 - 2.1 Ranking-by-choosing rules;
 - 2.2 Ranking-by-scoring rules.

Borda's candidate-to-rank matrix

The *candidate-to-rank matrix* Q_{ij} counts the number of times the candidate a_i is ranked at position j.

 $Q_{ij} = \{ \ \# \ rankings : a_i \ is \ ranked \ at \ the \ j \ th \ position \}$

Borda rank analysis tableau

voter's weight	marginal ranking	 	candi- dates	 	1	2	Q_ij 3	4	5
8	acbed	1	'a'		8	0	0	0	17
7	ebcda	Т	'b'	Т	4	7	14	0	0
4	dcbea	Τ	'c'		2	12	7	4	0
4	bdeca	Τ	'd'		4	6	0	7	8
2	cdbea	T	'e'		7	0	4	14	0

n ranking from different o 0 0 00 Types of ranking rules ○○ ○○●○ ○○○○○○

Borda's rule

• A Borda score B is computed for each candidate a_i as follows :

$$B(a_i) = \sum_{j=1}^n \left(Q_{ij} \times j \right)$$

The candidates are ranked from the lowest to the largest according to the Borda scores (to be mimized).

• A generalization of the Borda rule is to use any set of weights representing the ranks. Let $w_1 < w_2 < ... < w_n$ be increasing weights of the ranks. Then the Borda scores *B* are defined as follows :

$$B(a_i) = \sum_{j=1}^n (Q_{ij} \times w_j)$$

• The Borda ranking \succeq_B is the weak ranking defined as follows :

$$\forall x, y \in X, \quad (x, y) \in \succeq_B \quad \Leftrightarrow \quad b_x \leqslant b_y.$$

Example	(Borda's	weighted	scores

	_	Bor	da rank	analy	vsis ta	bleau	u				-
candi-	Ι		candida	ate x	rank		Boi	rda s	cor	es	
dates	Ι	1	2	3	4	5	Ι	w1	Ι	w2	
	- -										
'b'	Ι	4	7	14	0	0		60		88	
'c '	Ι	2	12	7	4	0	1	63	Ι	85	
'e'	Ι	7	0	4	14	0	I	75	Ι	111	
'd'	Ι	4	6	0	7	8	I	84	Ι	122	
'a'	Ι	8	0	0	0	17	I	93	Ι	144	
	- -										
w1	Т	1	2	3	4	5					
w2	Τ	1	2	5	6	8					

We observe two different rankings : R_{w1} : *bceda* and R_{w2} : *cbeda*, depending hence on the actual rank weights. Notice that the original Borda ranking R_{w1} is not consistent with the majority relation, which is R_{w2} . Given the ordinal nature of the input data, there is no information on how to assign weights to the ranks.

		,			/
nking from different opinions	Types of ranking rules	A classification of ranking rules	On ranking from different opinions	Types of ranking rules	A classification of ranking rules
	00 000● 000000 00000	0 0 00 000000	00 00 000	00 0000 ●00000 00000	0 0 00 000000

Generalized ranks-based rules

Definition (Borda type Rules, *SWR*/candidate×rank analysis)

Let r_{ik} , i = 1..n, k = 1..q be the rank of candidate a_i in ranking R_k , and $w_1, w_2, ..., w_q$ be a set of given rank weights. We may rank :

1. according to the average weighted rank :

$$B(a_i) = \frac{1}{q} \sum_{k=1}^{q} (r_{ik} \times w_k)$$

 $\ensuremath{2.}\xspace$ according to the weighted median rank :

$$B(a_i) = \text{median}[(r_{i1} \times w_1), (r_{i2} \times w_2), ..., (r_{iq} \times w_q))$$

3. by minimizing a given distance function (Cook & Seiford).

Condorcet : Ranking-by-choosing Rules

Definition (Kohler's Rule, MLR/majority margins M(x, y))

Optimistic sequential maximin rule. At step r (where r goes from 1 to n) :

- 1. Compute for each candidate x the smallest M(x, y) ($x \neq y$);
- 2. Select the candidate for which this minimum is maximal. If there are ties select in lexicograpic order;
- 3. Put the selected candidate at rank r in the final ranking;
- 4. Delete the row and the column corresponding to the selected candidate and restart from (1).

Example (Kohler's ranking rule)

On ranking from different opinions	Types of ranking rules	A classification of ranking rules
00	00	0
00	0000	0
000	000000	00
	00000	000000

Ranking-by-choosing Rules - continue

Definition (Ranked Pairs' Rule, MLR/majority margins M(x, y))

- 1. Rank in decreasing order the ordered pairs (x, y) of candidates according to their majority margin M(x, y).
- 2. Take any linear ranking compatible with this weak order.
- 3. Consider the pairs (x, y) in that order and do the following :
 - $3.1\,$ If the considered pair creates a cycle with the already blocked pairs, skip this pair ;
 - 3.2 If the considered pair does not create a cycle with the already blocked pairs, block this pair.

On	ranking	from	different	opinions
00				
00				
00	0			

Ranking-by-choosing Rules – continue

Definition (Arrow & Raynaud's Rule, MLR/majority margins M(x, y))

Pessimistic (prudent) sequential minmax rule. At step r (where r goes from 1 to n) :

- 1. Compute for each candidate x the largest M(x, y) ($x \neq y$);
- 2. Select the candidate for which this maximum is minimal. If there are ties select the candidates in lexicographic order;
- 3. Put the selected candidate at rank n r + 1 in the final ranking;
- 4. Delete the row and the column corresponding to the selected candidate and restart from (1).

Example (Ranked Pairs rule)

FIGURE – 3. Source : Cl. Lamboray

000000

Example (Condorcet : Ranking-by-choosing)

>>> ar = KohlerOrder(cdcd) # Arrow-Raynaud rule

>>> from linearOrders import *

>>> cdcd = ~(-cd) # codual of cd

>>> ko = KohlerOrder(cd)

>>> ko.kohlerRanking
['c', 'b', 'e', 'd', 'a']

>>> ar.kohlerRanking
['c', 'b', 'e', 'd', 'a']
>>> rp = RankedPairsOrder(cd)
>>> rp.rankedPairsRanking
['c', 'b', 'e', 'd', 'a']

A classification of ranking rules 0 0 00 ranking from different opi

Types of ranking rules

Condorcet : Ranking-by-scoring rules

Definition (NetFlows Rule, MWR/majority margins M(x, y))

- The idea is that the more a given candidate beats other candidates the better it is.
- Similarly, the more other candidates beat a given candidate, the lower this candidate should be ranked.
- The NetFlows score n_x of candidate x is defined as follows :

$$n_x = \sum_y \big[M(x,y) - M(y,x) \big].^1$$

• The NetFlows ranking \succeq_N is the weak ranking defined as follows : $\forall x, y \in X$, $(x, y) \in \succeq_N \Leftrightarrow n_x \ge n_y$.

1. Notice that in the case of linear profiles, we may drop the -M(y,x) term due to the zero sum property.

opinions	Types of ranking rules	A classification of ranking rules	On ranking from different opinions	Types of ranking rules	A classification of ranking rules
	00 00000 000000 0●000	0 00 000000	00 00 000	00 0000 000000 000000	0 0 00 000000

Condorcet : Ranking-by-scoring rules

Definition (Copeland's Rule, MWR/majority relation C(x, y))

• The idea is that the more a given candidate beats other candidates at majority the better it should be ranked.

Kohler's, Arrow&Raynaud's and the RankedPairs rule all result in the same

unique linear ranking : 'cbeda', which corresponds to the majority relation C.

- Similarly, the more other candidates beat a given candidate at majority, the lower this candidate should be ranked.
- The Copeland score c_x of candidate x is defined as follows :

$$c_x = \#\{y \neq x \in X : M(x, y) > 0\} \\ - \#\{y \neq x \in X : M(y, x) > 0\} \\ = \sum_y (C(x, y) - C(y, x)).$$

• The Copeland ranking \succeq_C is the weak ranking defined as follows : $\forall x, y \in X$, $(x, y) \in \succeq_C \Leftrightarrow c_x \ge c_y$.

Condorcet : Ranking-by-scoring rules

Definition (Kemeny's Rule, MLR/majority margins M(x, y))

- The idea is finding a compromise ranking R that minimizes the distance to the q marginal linear rankings of the voting profile according to the symmetric difference measure : δ . If R_1 and R_2 are two relations, $\delta(R_1, R_2) = |R_1 \oplus R_2|/2$.
- The Kemeny ranking, also called *median* ranking, R^* is a solution of the following optimization problem : :

minarg_R
$$\delta(M, R) \equiv \max \operatorname{maxarg}_R \sum_{(x,y) \in R} \left[M(x, y) \times r(x \operatorname{R} y) \right]$$

such that R is a linear ranking.

 The distance δ(M, R*) is called the Kemeny index of a preference profile. Computing the Kemeny index is an NP-complete problem and Kemeny rankings are generally not unique.

21/36

A classification of ranking rules

Definition (Slater's Rule, MLR/majority relation C(x, y))

00000

- The idea is to select a ranking that is closest according to the symmetric difference distance δ to the Condorcet digraph's polarized relation $M_{>0}$.
- The Slater ranking *R*^{*} is a solution of the following optimization problem :

$$\mathsf{minarg}_R \ \delta(M_{>0}, R) \equiv \mathsf{maxarg}_R \ \sum_{(x, y) \in R} \left[C(x, y) \times r(x \, \mathbb{R} \, y) \right]$$

such that R is a linear ranking.

• The distance $\delta(R^*, M_{>0})$ is called the Slater index of a preference profile. Computing the Slater index of a profile is an NP-hard problem and Slater rankings are even less unique than Kemeny rankings.

On ranking f	from different	opinions
00		
000		

Types of ranking rules 00 0000 000000 00000

Content Lecture 3

1. On ranking from different opinions

Definition of the ranking problem Linear Rankings Majority margins

2. Types of ranking rules

Borda type rules Condorcet : Ranking-by-choosing rules Condorcet : Ranking-by-scoring rules

3. A classification of ranking rules

Condorcet-consistency *M*-ordinality and *M*-invariance Which ranking rule should we use?

Example	(Condorcet	÷	ranking-by-scorin	lg)
Example	٦,	condorcet		running by seem	·ь,

*	- 1	Maj	ority	margins				
Mxy		1	'a'	'n,	'c'	'd'	'e'	
'a	,	1	0	-9	-9	-9	-9	
'b	,	1	9	0	-3	13	11	
'c	,	1	9	3	0	9	3	
'd	,	1	9	-13	-9	0	-5	
'e	,	1	9	-11	-3	5	0	
>>> c	d.	com	puteNe	etFlowsR	anking(Debug=T	rue)	
Order	ed	Dic	t([('ì	o',60),('c',48)	,('e',0),('d'	,-36),('a',-72.0)])
['b',	,	с',	'e',	'd', 'a	']			
>>> c	d.	com	puteCo	opelandR	anking(Debug=T	rue)	
Order	ed	Dic	t([('o	c', 4),	('b', 2	2), ('e'	, 0),	('d', -2), ('a', -4)])
['c',	,	b',	'e',	'd', 'a	']			
>>> f	>>> from linearOrders import KemenyOrder							
>>> ke = KemenyOrder(cd); ke.maximalRankings								
[['c', 'b', 'e', 'd', 'a']]								
>>> k	ec	:d =	Kemer	nyOrder(cdcd);	kecd.ma	ximalR	ankings
[['c'	,	'b'	, 'e'	, 'd', '	a']]			

The NetFlows rule, like the Borda rule, inverts the two top ranked candidates : '*bceda*', whereas Copeland's, Kemeny's and Slater's rules result again in the same unique ranking : '*cbeda*'.

25/30			
of ranking rules	On ranking from different opinions 00 00 000	Types of ranking rules 00 00000 000000 000000	A classification of ranking rules

A classification of ranking rules

Definition (Condorcet-consistency)

A ranking rule is **Condorcet-consistent** if the following holds : If the majority relation is a linear ranking, then this ranking is the unique solution of the ranking rule.

Property (Condorcet consistent rules)

Kemeny's, Slater's, Copeland's, Kohler's and the RankedPairs rule are all Condorcet-consistent. The Borda and the NetFlows rules are, both, not Condorcet-consistent.

75 / 26

A classification

1	ranking	from	different	opinio
5	0			

A classification of ranking rules

Definition (M-ordinality)

A ranking rule is M-ordinal if its ranking result only depends on the order of the majority margins.

Property (*M*-ordinal rules)

Slater's, Copeland's, Kohler's and the RankedPairs rule are all M-ordinal. The Kemeny and the NetFlows rules are not M-ordinal.

Definition (M-invariance)

A ranking rule is M-invariant if its ranking result only depends on the sign of the majority margins.

Property (*M*-invariant rules)

Slater's and Copeland's rule are both M-invariant. Kohler's and the RankedPairs rules are not M-invariant.

		,
On ranking from different opinions	Types of ranking rules	A classification of ranking rules
00	00	0
00	0000	0
000	000000	00
	00000	00000

Which ranking rule should we use

- There is no perfect ranking rule (cf Arrow's theorem).
- What properties of a ranking rule are useful or required?
- Axiomatic characterizations of the ranking rules.
- More or less consensual global rankings?
- Correlation with the majority margins M(x, y)?
- Fitness for big data : computational complexity?

A classification of ranking rules by Cl. Lamboray

 $\rm FIGURE$ – 4. $\it SWR$: single weak ranking, $\it MLR$: multiple linear rankings

30 / 36

Example (Which is the *better* social ranking?)

>>> from votingProfiles import *

- >>> v = LinearVotingProfile('example1')
- >>> v.showHTMLVotingHeatmap(rankingRule='Copeland')
- >>> v.showHTMLVotingHeatmap(rankingRule='NetFlows')

criteria	v5	v3	v 2	v4	v1
weights	2	4	7	4	8
tau ^(*)	0.60	0.40	0.40	0.20	0.20
С	5	4	3	2	4
b	3	3	4	5	3
е	2	2	5	3	2
d	4	5	2	4	1
a	1	1	1	1	5

criteria	v 2	v5	v4	v3	v1
weights	7	2	4	4	8
tau ^(*)	0.60	0.40	0.40	0.20	0.00
b	4	3	5	3	3
С	3	5	2	4	4
е	5	2	3	2	2
d	2	4	4	5	1
a	1	1	1	1	5

Figure – 5. Copeland – versus NetFlows ranking.

(*) tau : Ordinal (Kendall) correlation between *marginal* and *global* ranking. The ranks are of *reversed Borda type* : $w_1 = 5, w_2 = 4, w_3 = 3, w_4 = 2, w_5 = 1$.

Example (Correlations with the majority margins)

>>> cd.recodeValuation(1,1) # normalizing the majority margins >>> from linearOrders import CopelandOrder, NetFlowsOrder >>> cop = CopelandOrder(cd); cop.copelandOrder ['a', 'd', 'e', 'b', 'c'] >>> corr = cd.computeOrderCorrelation(cop.copelandOrder) >>> cd.showCorrelation(corr) Correlation indexes: Crisp ordinal correlation : +1.000 Valued equivalalence : +0.320 Epistemic determination : 0.320 >>> nf = NetFlowsOrder(cd); nf.netFlowsOrder ['a', 'd', 'e', 'c', 'b'] >>> corr cd.computeOrderCorrelation(nf.netFlowsOrder) Correlation indexes: Crisp ordinal correlation : +0.925 Valued equivalalence : +0.296 Epistemic determination : 0.320

In this example, the *Condorcet-consistency* property assures that the *Copeland*, *Kemeny* and *Slater* ranking rules all deliver a perfectly matching ordinal result ($\tau = +1.0$), whereas the *Net-Flows* rule inverts the top candidates ($\tau = +0.925$). The epistemic determination of the majority margins is 0.32, ie the ordinal correlations are supported here in average by a (1.0 + 0.32)/2 = 66% majority, ie 16/25 voters. On ranking from different opinions 00 00 000 Types of ranking rules

A classification of ranking rules

Exercise (Claude Lamboray, PhD thesis p. 35)

Apply all the previous ranking rules on the following profile of 10 weighted linear orders defined on 4 candidates $\{a, b, c, d\}$ as shown below; discuss the results.

4 : abcd	3 : bcad
4 : dcab	4 : dabc
4 : cabd	2 : cdab
5 : dbca	2 : bacd
1 : cbda	1 : acdb

					34 / 36
On ranking from different opinions	Types of ranking rules	A classification of ranking rules	On ranking from different opinions	Types of ranking rules	A classification of ranking rules
00	00	0	00	00	0
00	0000	0	00	0000	0
000	000000	00	000	000000	00
	00000	000000		00000	00000

Exercise (*votingProfiles* module extension)

Suppose that some voters will not provide a complete linear ranking of all the candidates. Develop Python code based on the votingProfiles module, that implements all the previously defined ranking rules and renders a corresponding ranking when given a LinearVotingProfile instance with partial ballots.

Digraph3 software resources

- Documentation index : https://digraph3.readthedocs.io/en/latest/index.html
- Tutorials : https://digraph3.readthedocs.io/en/latest/tutorial.html
- Reference manual : https://digraph3.readthedocs.io/en/latest/techDoc.html
- Advanced topics : https ://digraph3.readthedocs.io/en/latest/pearls.html