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Bipolar characteristic function r

• X = {x , y , z , ...} is a finite set of m decision alternatives;

• We define a binary relation R on X with the help of a bipolar
characteristic function r taking values in the rational interval
[−1.0; 1.0].
• Bipolar semantics: For any pair (x , y) ∈ X 2,

1. r(x R y) = +1.0 means x R y valid for sure,
2. r(x R y) > 0.0 means x R y more or less valid,
3. r(x R y) = 0.0 means both x R y and x 6 R y indeterminate,
4. r(x R y) < 0.0 means x 6 R y more or less valid,
5. r(x R y) = −1.0 means x 6 R y valid for sure.

• Boolean operations: Let φ and ψ be two relational
propositions.

1. r(¬φ) = −r(φ).
2. r(φ ∨ ψ) = max

(
r(φ), r(ψ)

)
,

3. r(φ ∧ ψ) = min
(
r(φ), r(ψ)

)
.
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Weakly complete binary relations

Let R be an r -valued binary relation defined on X .

Definition
We say that R is weakly complete on X if, for all (x , y) ∈ X 2,
either r(x R y) > 0.0 or r(y R x) > 0.0.

Examples

1. Marginal semi-orders (orders with discrimination thresholds)
observed on each criterion,

2. Global weighted “at least as performing as” relations,

3. Outranking relations (polarized with considerable performance
differences),

4. Fusion of (vague) weak or linear orders,

5. Ranking-by-choosing ordering results.
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Universal properties

Let R denote the set of all possible weakly complete relations
definable on X .

Property (R-internal operations)

1. The convex combination of any finite set of such weakly
complete relations remains a weakly complete relation.

2. The disjunctive combination of any finite set of such weakly
complete relations remains a weakly complete relation.

3. The epistemic-conjunctive (resp. -disjunctive) combination of
any finite set of such weakly complete relations remains a
weakly complete relation.

Examples: Concordance of linear-, weak- or semi-orders, bipolar
outranking (concordance-discordance) relations.

6 / 30

ranking problem ranking-by-scoring ranking-by-choosing Concluding

Useful properties

We say that a binary relation R ∈ R verifies the coduality principle
(> ≡ 66), if the converse of its negation equals its asymetric part :
min

(
r(x R y),−r(y R x)

)
= −r(y R x). Let Rcd denote the set of

all possible relations R ∈ R that verify the coduality principle.

Property (Coduality principle)

The convex and epistemic-disjunctive (resp. -conjunctive)
combinations of a finite set of relations in Rcd verify again the
coduality principle.

Examples: Marginal linear-, weak- and semi-orders; concordance
and bipolar outranking relations; all, verify the coduality principle.
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The Multiple Criteria Ranking Problem

• A ranking problem traditionally consists in the search for a linear
ranking (without ties) or a weak ranking (with ties) of the set of
alternatives.

• A paricular ranking is computed with the help of a ranking rule
which aggregates preferences over all decision makers and/or
performance criteria into a global (weak) ranking based on
(pairwise) bipolar-valued outranking characteristics r(%).

• Characteristic properties of ranking rules:

1. A ranking rule is called Condorcet-consistent when the
following holds: If the median cut relation (Condorcet
majority) is a linear ranking, then this linear ranking is the
unique solution of the ranking rule;

2. A ranking rule is called r -ordinal if its result only depends on
the order of the bipolar outranking characteristics r(%);

3. A ranking rule is called r -invariant if its result only depends on
the sign of the bipolar outranking characteristics sign(r(%)).
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A classification of ranking rules by Cl. Lamboray

Condorcet−consistency No Condorcet−consistency

Kemeny (MLR)

Kohler (MLR)

Ranked−Pairs (MLR)

Classification of ranking rules

Borda (SWR)

Net−Flows (SWR)

Copeland (SWR)

Slater(MLR)

r−ordinalityNo r−ordinality

r−invariance No r−invariance

Figure: 4. SWR: single weak ranking, MLR: multiple linear rankings
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Quality criteria for ranking results

• Best satisfying Condorcet consistency: Highest possible
ordinal correlation with global outranking relation %.

• Best majority significance supported: Highest possible mean
weighted marginal correlation.

• Best multiple criteria compromise: Lowest possible standard
deviation of the mean marginal correlation.

• Fairest ranking result: Highest mean marginal correlation
minus one standard deviation.
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Ranking-by-scoring Rule – I

Definition (Copeland’s Rule, WO/Condorcet Digraph)

• The idea is that the more a given alternative beats other
alternatives at majority the better it should be ranked.
Similarly, the more other alternatives beat a given alternative
at majority, the lower this alternative should be ranked.

• The Copeland score cx of alternative x ∈ X is defined as
follows:

cx = |{y 6= x ∈ X : r(x % y) > 0}|
− |{y 6= x ∈ X : r(y % x) > 0}|

• The Copeland ranking �C is the weak order defined as
follows: ∀x , y ∈ X , (x , y) ∈ �C ⇔ cx > cy .

• Copelande’s rule is invariant under the codual transform.



Random Cost-Benefit performance tableau

>>> from randomPerfTabs import\

RandomCBPerformanceTableau

>>> t = RandomCBPerformanceTableau(

numberOfActions=7,numberOfCriteria=5,

seed=100)

>>> t

*--- instance description ------*

Instance class:

RandomCBPerformanceTableau

Seed : 100

Instance name : randomCBperftab

# Actions : 7

# Objectives : 2

# Criteria : 5

>>> t.showHTMLPerformanceTableau()

We observe two benefit criteria

(b1,b2) of signifinace 3.0 and

three costs criteria (c1,c2,c3)

of significance 3.0. There are

two advantageous (a5a,a7a), two

cheap (a1c,a4c) and three neutral

(a2n,a3n,a6n) decision alternatives.

Computing a Copeland ranking

>>> from outrankinDigraph import *

>>> g = BipolarOutrankingDigraph(g,

Normalized=True)

>>> from linearOrders\

import CopelandRanking

>>> cop = CopelandRanking(g)

>>> cop.showRanking()

[’a6’,’a5’,’a2’,’a7’,’a4’,’a1’,’a3’]

>>> corr =\

g.computeOrdinalCorrelation(cop)

>>> g.showCorrelation(corr)

Correlation indexes:

Crisp ordinal correlation : +0.728

Epistemic determination : 0.335

Bipolar-valued equivalence : +0.244

>>> t.showHTMLPerformanceHeatmap(

pageTitle=’Copeland Ranking’,

actionsList=cop.copelandRanking,

colorLevels=5,Correlations=True)

>>> t.showRankingConsensusQuality(

cop.copelandRanking)

Summary:

mean marg. correlation (a): +0.224

Standard deviation (b) : +0.317

Ranking fairness (a)-(b) : -0.093
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Ranking-by-scoring Rule – II

Definition (Net-flows’s Rule, WO/r(%))

• The idea is that the more a given alternative beats other
alternatives the better it is. Similarly, the more other alternatives
beat a given alternative, the lower this alternative should be ranked.

• The net-flows score cx of alternative x ∈ X is defined as follows:

nx =
∑

y∈X ∧ y 6=x

[
r(x % y)− r(y % x)

]

• The net-flows ranking �C is the weak order defined as follows:
∀x , y ∈ X , (x , y) ∈ �C ⇔ nx > ny .

• The NetFlows’rule is invariant under the codual transform. The rule
gives the same result for both the r(%) and the r(�) digraph.
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Computing a NetFlows ranking

>>> # same performance tableau t

>>> from outrankingDigraphs import\

BipolarOutrankingDigraph

>>> g = BipolarOutrankingDigraph(t,

Normalized=True)

>>> from linearOrders\

import NetFlowsRanking

>>> nf = NetFlowsRanking(g)

>>> nf.showRanking()

[’a2’,’a6’,’a7’,’a5’,’a4’,’a1’,’a3’]

>>> corr =\

g.computeOrdinalCorrelation(nf)

>>> g.showCorrelation(corr)

Correlation indexes:

Crisp ordinal correlation : +0.716

Epistemic determination : 0.335

Bipolar-valued equivalence : +0.240

>>> t.showHTMLPerformanceHeatmap(

pageTitle = ’NetFlows Ranking’,

colorLevels=5,Correlations=True)

>>> # NetFlows rule is default

>>> t.showRankingConsensusQuality(

nf.netFlowsRanking)

Summary:

mean marg. correlation (a): +0.220

Standard deviation (b) : +0.251

Ranking fairness (a)-(b) : -0.031



Ranking-by-scoring Rule – III

Definition (Kemeny’s Rule, SLO/r(%))

• The original idea is finding a compromise ranking O that
minimizes the distance to the q marginal linear orders of the
voting profile according to the symmetric difference measure.

• With bipolar-valued outranking digraphs, the Kemeny (also
called median) order O∗ is a solution of the following
optimization problem:

maxargO
∑

(x ,y)∈O
(
r(x % y) − r(y % x)

)

such that O is a linear order on X

• Finding a Kemeny order O∗ is an NP-complete problem. We
need to inspect all possible permutations of the decision
alternatives.

• The Kemeny rule is invariant under the codual transform.

Computing a Kemeny ranking

>>> # same outranking digraph g

>>> from linearOrders\

import KemenyRanking

>>> ke = KemenyRanking(g)

>>> ke.showRanking()

[’a6’,’a5’,’a7’,’a2’,’a4’,’a3’,’a1’]

>>> corr =\

g.computeOrdinalCorrelation(ke)

>>> g.showCorrelation(corr)

Correlation indexes:

Crisp ordinal correlation : +0.893

Epistemic determination : 0.335

Bipolar-valued equivalence : +0.300

>>> t.showHTMLPerformanceHeatmap(

pageTitle=’Kemeny Ranking’,

actionsList=ke.kemenyRanking,

colorLevels=5,Correlations=True)

>>> t.showRankingConsensusQuality(

ke.kemenyRanking)

Summary:

mean marg. correlation (a): +0.280

Standard deviation (b) : +0.423

Ranking fairness (a)-(b) : -0.143
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Ranking-by-scoring Rule – IV

Definition (Slater’s Rule, SLO/Condorcet Digraph)

• The idea is to select a ranking that is closest according to the
symmetric difference distance to the Condorcet digraph’s relation
r(x % y)>0.

• The Slater order O∗ is a solution of the following optimization
problem:

maxargO

∑
(x,y)∈O

(
r(x % y)>0 − r(y % x)>0

)

such that O is a linear order on X

• Slater’s rule is again invariant under the codual transform and an
NP-hard problem.
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Computing a Slater ranking

>>> # same outranking digraph g

>>> from linearOrders\

import SlaterRanking

>>> sl = SlaterRanking(g)

>>> sl.showRanking()

[’a6’,’a5’,’a7’,’a2’,’a4’,’a3’,’a1’]

# same as the Kemeny ranking

>>> corr =\

g.computeOrdinalCorrelation(sl)

>>> g.showCorrelation(corr)

Correlation indexes:

Crisp ordinal correlation : +0.893

Epistemic determination : 0.335

Bipolar-valued equivalence : +0.300

>>> t.showHTMLPerformanceHeatmap(

pageTitle=’Slater Ranking’,

actionsList=sl.slaterRanking,

colorLevels=5,Correlations=True)

>>> t.showRankingConsensusQuality(

sl.slaterRanking)

Summary:

mean marg. correlation (a): +0.280

Standard deviation (b) : +0.423

Ranking fairness (a)-(b) : -0.143
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Ranking-by-choosing Rule – I

Definition (Kohler’s Rule, SLO/r(%))

Optimistic sequential maximin rule. At step r (where r goes from
1 to n):

1. Compute for each alternative x the smallest r(x % y) (x 6= y);

2. Select the alternative for which this minimum is maximal. If
there are ties select one of these alternatives at random;

3. Put the selected alternative at rank r in the final ranking;

4. Delete the row and the column corresponding to the selected
alternative and restart from (1).
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Computing a Kohler ranking

>>> # same outranking digraph g

>>> from linearOrders\

import KohlerRanking

>>> ko = KohlerRanking(g)

>>> ko.showRanking()

[’a6’,’a5’,’a7’,’a2’,’a4’,’a3’,’a1’]

# same as the Kemeny ranking

>>> corr =\

g.computeOrdinalCorrelation(ko)

>>> g.showCorrelation(corr)

Correlation indexes:

Crisp ordinal correlation : +0.893

Epistemic determination : 0.335

Bipolar-valued equivalence : +0.300

>>> t.showHTMLPerformanceHeatmap(

pageTitle=’Kohler Ranking’,

actionsList=ko.kohlerRanking,

colorLevels=5,Correlations=True)

>>> t.showRankingConsensusQuality(

ko.kohlerRanking)

Summary:

mean marg. correlation (a): +0.280

Standard deviation (b) : +0.423

Ranking fairness (a)-(b) : -0.143
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Ranking-by-choosing Rule – II

Definition (Arrow & Raynaud’s Rule, SLO/majority margins
r(%))

Pessimnistic sequential minmax rule. At step r (where r goes from
1 to n):

1. Compute for each alternative x the largest r(x % y) (x 6= y);

2. Select the alternative for which this maximum is minimal. If
there are ties select one of these alternatives at random;

3. Put the selected alternative at rank n − r + 1 in the final
ranking;

4. Delete the row and the column corresponding to the selected
alternative and restart from (1).

The Arrow & Raynaud ranking may be computed with Kohler’s
rule but applied to the dual transform of the outranking digraph.
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Computing an Arrow & Raynaud ranking

>>> # same outranking digraph g

>>> from linearOrders\

import KohlerRanking

>>> ar = KohlerRanking((-g))

>>> ar.showRanking()

[’a7’,’a2’,’a4’,’a6’,’a5’,’a3’,’a1’]

>>> corr =\

g.computeRankingCorrelation(ar.kohlerOrder)

>>> g.showCorrelation(corr)

Correlation indexes:

Crisp ordinal correlation : +0.787

Epistemic determination : 0.335

Bipolar-valued equivalence : +0.264

>>> t.showHTMLPerformanceHeatmap(

pageTitle=’Arrow&Raynaud Ranking’,

actionsList=ar.kohlerOrder,

colorLevels=5,Correlations=True)

>>> t.showRankingConsensusQuality(

ar.kohlerOrder)

Summary:

mean marg. correlation (a): +0.244

Standard deviation (b) : +0.366

Ranking fairness (a)-(b) : -0.122
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Ranking-by-choosing Rule – III

Definition (Ranked-Pairs’ Rule, SLO/majority margins r(%))

1. Rank in decreasing order the ordered pairs (x , y) of
alternatives according to r(x % y) − r(y % x).

2. Take any linear order compatible with this weak order.

3. Consider the pairs (x , y) in that order and do the following:

3.1 If the considered pair creates a cycle with the already blocked
pairs, skip this pair;

3.2 If the considered pair does not create a cycle with the already
blocked pairs, block this pair.
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Computing a Ranked-Pairs ranking

>>> # same outranking digraph g

>>> from linearOrders import\

RankedPairsRanking

>>> rp = RankedPairsRanking(g)

>>> rp.showRanking()

[’a7’,’a2’,’a4’,’a6’,’a5’,’a3’,’a1’]

# same as the Arrow&Raynaud result

>>> corr =\

g.computeOrdinalCorrelation(rp)

>>> g.showCorrelation(corr)

Correlation indexes:

Crisp ordinal correlation : +0.787

Epistemic determination : 0.335

Bipolar-valued equivalence : +0.264

>>> t.showHTMLPerformanceHeatmap(

pageTitle=’RankedPairs Ranking’,

actionsList=rp.rankedPaisRanking,

colorLevels=5,Correlations=True)

>>> t.showRankingConsensusQuality(

rp.rankedPairsRanking)

Summary:

mean marg. correlation (a): +0.244

Standard deviation (b) : +0.366

Ranking fairness (a)-(b) : -0.122
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Summerizing all ranking results

Ranking NetFlows Copeland RankedPairs(*) Kemeny(**)

τ% +0.716 +0.728 +0.787 +0.893
τb1 +0.33 +0.62 +0.24 +0.81
τb2 +0.12 -0.02 +0.60 +0.17
τc1 +0.40 +0.31 -0.07 +0.12
τc2 +0.50 +0.40 +0.64 +0.55
τc3 -0.26 -0.26 -0.36 -0.45
mean(τ) (a) +0.220 +0.224 +0.244 +0.280
stdev(τ) (b) 0.251 0.317 0.366 +0.423
fairness (a)-(b) -0.031 -0.093 -0.122 -0.143

(*) Arrow & Raynaud’s and Tideman’s RankedPairs rules deliver in this
didactical example a same result. This is usually not the case.

(**) Similarly, Kohler’s and Slater’s rules deliver the same ranking result as
Kemeny’s rule. This is again usually not the case.
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What ranking rule should one use ? – I

1. Kemeny’s rule shows, on the one hand, the most adversary ranking
with highest mean marginal correlation (+0.280), but also highest
marginal correlation spread (0.423), and consequently lowest fainess
index (-0.143).

2. The NetFlows rule, on the other hand, shows with highest fairness
index (-0.031), the most consensual ranking result. A result due,
despite the lowest mean marginal correlation (+0.220), to the
lowest marginal correlation spread (0.251).

3. The Copeland and the RankedPairs rules show ranking results with
a quality in between both previous extremes.

4. Depending on the numerical diversity of the pairwise bipolar-valued
outranking characteristics, the NetFlows rule, by tempering the
Condorcet consistency (the potential dictatorship of the majority
principle), gives usually the fairest (most consensual) ranking result.
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What ranking rule should one use ? – II

1. Kemeny’s and Slater’s ranking-by-scoring rules, besides potemtially
delivering multiple weak rankings, are furthermore computationally
difficult problems and exact ranking results are only computable for
tiny outranking digraphs (order < 20).

2. Similarly, the ranking-by-choosing and their dual, the
ordering-by-choosing rules, are unfortunately not scalable to
outranking digraphs of larger orders (> 100).

3. Only Copeland’s and the NetFlows ranking rules, with a polynomial
complexity O(n2), where n is the order of the outranking digraph,
remain scalable for outranking digraphs with several hundred or
thousand decision alternatives.

See the Digraph3 tutorial on Ranking with multiple incommensurable

criteria (https://digraph3.readthedocs.io/en/latest/index.html).
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