
Classical Monte Carlo Integration Accept-reject methods

Computational Statistics
Lecture 8: Accept-Reject Methods

Raymond Bisdorff

University of Luxembourg

December 13, 2019

1 / 22

Classical Monte Carlo Integration Accept-reject methods

Content of Lecture

1. Classical Monte Carlo Integration
MCI principles
Illustrative MCI application
MC integration in action

2. Accept-reject methods
Accept-reject principle
Applications
Ratio-Of-Uniforms Method

2 / 22

Classical Monte Carlo Integration Accept-reject methods

1. Classical Monte Carlo Integration
MCI principles
Illustrative MCI application
MC integration in action

2. Accept-reject methods
Accept-reject principle
Applications
Ratio-Of-Uniforms Method

3 / 22

Classical Monte Carlo Integration Accept-reject methods

Principles of Monte Carlo integration

The generic problem of Monte Carlo Integration (MCI) consists in
evaluating the following integral:

Ef [h(X)] =

∫

Sx

h(x)f (x)dx , (∗)

where Sx denotes the set where the random variable X takes its value,
which is usually equal to the support of the density f . The principle of
MCI method for approximating Integral (*) is to generate a sample
(X1.X2, ...,Xn) from the density f and propose as an approximation for
Ef [h(X)] the empirical average hn as follows:

hn =
1

n

n∑

j=1

h(xj). (∗∗)

By the Strong Law of Large Numbers, hn converges indeed to Ef [h(X)].

4 / 22

Classical Monte Carlo Integration Accept-reject methods

Monte Carlo Integration – continue
When h(X) has a finite expectation under f , the convergence
takes place at a speed O(

√
n) and the asymptotic variance of the

approximation (**) is

var(hn) =
1

n

∫

χ

(
h(x)− Ef [h(X)]

)2
f (x)dx ,

which can be estimated from the sample (X1.X2, ...,Xn) through

vn =
1

n2

n∑

j=1

[h(x)− hn]2.

Due to the CLT, for large n,

hn − Ef [h(X)]√
vn

 N (0, 1).

5 / 22

Classical Monte Carlo Integration Accept-reject methods

MCI application

MCI of
h(x) =(

cos(50x) + sin(20x)
)2

over the interval [0, 1]
may be achieved with a sam-
ple (U1, ...,Un) of 104 i.i.d
U(0, 1) random variables.
We approximate

∫
h(x)dx

with
∑

h(Ui)/n.

Example R session:

> h = function(x){

+ (cos(50*x) + sin(20*x))^2 }

> integrate(h,0,1)

0.9652009 with |error| < 1.9e-10

> n = 10^4

> x = runif(n)

> hx = h(x)

> estint=cumsum(hx)/(1:n)

> estint[n]

[1] 0.9681744

> esterr=sqrt(cumsum(

+ (hx-estint)^2) / (1:n)^2)

> esterr[n]

[1] 0.01044141

6 / 22

MCI application – continue

The upper panel in the figure below shows the function h(x) over
the domain [0, 1]. The lower panel shows the running means with
bounds of 2× the estimated standard error depending on the
sample size n = 104.

Example R session:

> par(mfrow=c(2,1))

> curve(h,0,1,xlab="h(x) =

+ [cos(50x)+sin(20x)]^2",ylab="",

+ lwd=2,col="blue")

> abline(h=0,lty=3)

> plot(estint,

+ xlab="Mean and error range",

+ type="l",lwd=2,,ylab="",

+ ylim=mean(hx)+

+ 20*c(-esterr[n],esterr[n]))

> lines(estint-2*esterr,col="gold",

+ lwd=2)

> lines(estint+2*esterr,col="gold",

+ lwd=2)

Classical Monte Carlo Integration Accept-reject methods

Simple MC integration in action

Examples

1. To approximate the integral
∫ 1

0
x4dx in the interval [0, 1] one may

use the following R code:
> U = runif(10^5)

> mean(U^4)

[1] 0.2008846

The exact answer naturally is [x5/5]10 =

1/5− 0 = 0.2

2. To approximate the integral
∫ 5

2
sin(x)dx one may use the following

R code:

> U = runif(10^5, min=2, max = 5)

> mean(sin(U)) * (5-2)

[1] -0.6984924

The exact answer is [−cos(x)]52, with

> cos(2) - cos(5)

[1] -0.699809

8 / 22

Classical Monte Carlo Integration Accept-reject methods

multiple Monte Carlo integration

Let U1, U2, ...,Un and V1, V2, ...,Vn be two sets of independent
uniform distributed random variables on the interval [0, 1], and
suppose g(x , y) is now an integrable function of two variables x
and y , then the CLT states that

(
lim

n→∞
1

n

n∑

i=1

(
g(Ui ,Vi)

))
(b − a)(d − c) =

∫ b

a

∫ d

c
g(x , y)dxdy

with probability 1.
So we can approximate the integral

∫ b
a

∫ d
c g(x , y)dxdy by

generating two sets of independent uniform numbers, computing
g(Ui ,Vi) for each one, and taking the sampled average multiplied
by the respective integration intervals.

9 / 22

Classical Monte Carlo Integration Accept-reject methods

Example of MMC integration

Example

To approximate the integral
∫ 10
3

∫ 7
1 sin(x − y)dxdy one may use

the following R code:

> U = runif(10^5,min=1,max=7)

> V = runif(10^5,min=3,max=10)

> mean(sin(U-V)) * (7-1) * (10-3)

[1] 0.07989664

10 / 22

Classical Monte Carlo Integration Accept-reject methods

Importance Sampling Principle
If the density of a random variable is f (x) then

E
[f (x)

g(x)

]
=

∫ +∞

−∞

(f (x)

g(x)

)
g(x)dx =

∫ +∞

−∞
f (x)dx

Hence we can approximate the last integral by taking the average
of a sample Xi of ratios f (Xi)/g(Xi).

Example
If we are interested in tail probabilities like P(Z > 4.5) =

∫∞
4.5

f (z)dz if
Z ∼ N (0, 1), which is very small (3.4e-06), we may enhance the MCI
approach by using a smart instrumental density g(x) like the exponential
distribution truncated at 4.5:

g(x) =
e−x

∫∞
4.5

e−(x−4.5)
,

11 / 22

Classical Monte Carlo Integration Accept-reject methods

Example of importance sampling
In the example above, the importance sampling estimator of the tail
probability becomes:

1

n

n∑

i=1

f (X (i))

g(X (i))
=

1

n

n∑

i=1

e−X 2
i /2+Xi−4.5
√

2π

> pnorm(-4.5)

[1] 3.397673-06

> Nsim=10^3

> x = rexp(Nsim) + 4.5

> isest = cumsum(dnorm(x)/

+ dexp(x-4.5))/1:Nsim

> plot(isest,type="l")

> abline(a=pnorm(-4.5),b=0,

+ col="red")

12 / 22

Classical Monte Carlo Integration Accept-reject methods

Content of Lecture

1. Classical Monte Carlo Integration
MCI principles
Illustrative MCI application
MC integration in action

2. Accept-reject methods
Accept-reject principle
Applications
Ratio-Of-Uniforms Method

13 / 22

Classical Monte Carlo Integration Accept-reject methods

Accept-reject principle

Accept-reject Monte Carlo methods are the most powerful and
may simulate virtually any integral or density distribution.
We only need to know the target density function f up to a
multiplicative constant. We use a simpler instrumental density g
verifying the following two conditions:

(i) f and g have a compatible support [low , high], i.e. g(x) > 0
when f (x) > 0 and x ∈ [low , high];

(ii) There is a constant M with f (x)/g(x) 6 M for all
x ∈ [low , high].

In this case, we proceed like this:

1. Generate independently Y ∼ g and U ∼ U(low , high).

2. If MY 6 f (U), we set X = Y .

14 / 22

Classical Monte Carlo Integration Accept-reject methods

Generating a Beta random variable
The support of the beta density is the interval [0, 1]. We suppose that

α > 1 and β > 1. The upper bound M of the acceptance domain is the

highest density observed for Beta(a, b). For a = 3.4 and b = 7.4 we

notice that dbeta(3.4, 7.4) < M = 3. With U ∼ U(low = 0, high = 1),

and a uniform intrumental density Y ∼ U(0, 1), we may generate the

beta random variable X ∼ Beta(a = 3.4, b = 7.4), by accepting all pairs

(U,Y) where MY is strictly below the density of Beta(3.4, 7.4):

> Nsim = 10^4

> low = 0; high = 1

> U = runif(Nsim,low,high)

> Y = runif(Nsim)

> a = 3.4; b = 7.4,M = 3

> X = U[M*Y < dbeta(U,a,b)]

> hist(X,freq=F,xlim=c(0,1),ylim=c(0,3),

+ main="Beta(3.4,7.4)

+ by accept-reject method")

15 / 22

Classical Monte Carlo Integration Accept-reject methods

Simulating a triangular density function

We may use as well this accept-reject method for simulating a random

number generator with a triangular density functionf (x) = 1− |1− x | for

x taking values in the interval [0, 2]. The intrumental density may be

uniform again. The triangular density being bounded by 1.0, we can set

M equal to 1:

> Nsim = 10^4

> low = 0 ; high = 2

> U = runif(Nsim,low,high)

> Y = runif(Nsim)

> M = 1

> X = U[M*Y < 1-abs(1-U)]

> hist(X,freq=F,xlim=c(0,2),ylim=c(0,1),

+ main="Triangular number generator")

> abline(0,1);abline(2,-1)

16 / 22

Classical Monte Carlo Integration Accept-reject methods

Accept-reject based generators - Exercises

Exercise

1. Accept-reject methods based generators do not deliver a fixed
number of random numbers. Update the method in order to
deliver a given number Nsim of instances.

2. Generalize the previous approach to implement a parametric
generator for triangular random numbers defined on the real
interval [m = 0,M = 10] with mode xmo = 4 and a
probability r = 0.6 to observe a value before or equal xmo and
1− r = 0.4 after it.

17 / 22

Classical Monte Carlo Integration Accept-reject methods

Application: Simulate a truncated Gaussian

We want to simulate the standard normal Z ∼ N (0, 1) random variable
restricted to the domain [−1.5,+2].

As instrumental distribution we take the standard Z variable and we

accept only the observations z that are in the required range. We thus

obtain the following truncated Gaussian random variable Zt:

> Nsim = 10^5

> low = -1.5; high = 2

> Z = rnorm(Nsim)

> Zt = Z[(Z > low) & (Z < high)]

> hist(Zt,freq=F,breaks=51,

xlim=c(-3,3),col="red")

> z = seq(-3,3,length=500)

> lines(z,dnorm(z),col="blue")

18 / 22

Classical Monte Carlo Integration Accept-reject methods

Application: Monte Carlo π estimation
The area of the circle of radius r = 1 is πr2. The area of the square
containing this circle is (2r)2 = 22 = 4. The ratio of the area of the circle
to the area of the square is:

ρ =
πr2

(2r)2
=

π

4
=

3.141593

4
= 0.7853982

> x = runif(Nsim)

> y = runif(Nsim)

> plot(x,y)

> rhox = x[(x^2+y^2)<1]

> rhoy = y[(x^2+y^2)<1]

> points(rhox,rhoy,col="red")

> ax = seq(0,1,0.01)

> lines(ax, sqrt(1-ax^2),

+ lwd=3,col="blue")

> 4*length(rhox)/length(x)

[1] 4 x 0.786 = 3.144

19 / 22

Classical Monte Carlo Integration Accept-reject methods

The Box-Muller accept-reject tranform

Recall the Box-Muller algorithm for the centered and reduced normal
Z ∼ N (0, 1) variable. It is based on the observation that, if U1 and U2

are two independent and identically U(0, 1) distributed random variables,
then: X1 =

√
−2 log(U1) cos(2πU2), X2 =

√
−2 log(U1) sin(2πU2), are

two independent and identically N (0, 1) distributed random variables.
Suppose we pick V1 and V2 instead as the ordinate and abcissa of a
uniform random point in the unit circle around the origin. Then the sum
of their squares R2 = V 2

1 + V 2
2 is a uniform variable that can be used for

U1, while the angle that the point (V1,V2) defines with respect to the V1

axis can serve as random angle 2πU2.
The cosine and sinus in the Box-Muller formula can now be written as
V1/
√

R2 and V2/
√

R2. This implementation can in fact be seen as a
kind of acept-reject method for computing trigonometric functions of a
uniform random angle.

(See Box-Muller transform)

20 / 22

Classical Monte Carlo Integration Accept-reject methods

Ratio-Of-Uniforms Method

Virtually any random variable X can be simulated by the following
simple prescription:

1. Construct a region A in the (u, v) plane
bounded by 0 6 u 6 [p(v/u)]1/2.

2. Choose a point P = (u, v) distributed
uniformly within this region A.

3. If P(u, v) ∈ A, return v/u as a required
simulated random variable instance .

21 / 22

Classical Monte Carlo Integration Accept-reject methods

Fast generation of Gaussian random variable

In case of a normal Z ∼ N (0, 1) random variable, the region A
becomes:

A = {(u, v) | v2 < −4u2 ln u}.
This region is entirely contained in the rectangle
R = {0 < u < 1,−(2/e)1/2 < v < (2/e)1/2} and the accept-reject
method is used to select the points P = (u, v) such that z = v/u
delivers the variable Z .

Exercise
In 1992, Joseph Leva has published a very fast and efficient Z variable generator based
on this approach (see his paper in the moodle resources).

1. Implement this algorithm in C++ (NR), in Python and in R,

2. Check the quality of the generator when compared with the standard Python
and R generators,

3. Compare the respective run times in C++, in Python and R for a sample of
100000 normal random numbers.

22 / 22

