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The Law of Large Numbers

• Assume that X1,X2, ...,Xn are independent and identically
distributed random variables with finite mean µ and variance
σ2. Then

limn→∞ 1
n

(
X1 + X2 + ...+ Xn

)
= µ

almost certainly.

• The expression almost certainly means that, with probability
one, the averages of any realization x1, x2, ... of the random
varaibles X1,X2, ... converge toward their common mean µ.

• This is good news, since many observed data sets concern
multiple realizations of some random variables.
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Estimating noise distribution parameters

• Assume that we have a measurement device whose output is a noisy
signal; meaning that the signal observed contains a noise
component.

• By attaching the device to a dummy load whose theoretical
noiseless output we know, we may calibrate the proper noise level of
the device, by subtracting this theoretical output, to obtain its pure
noise level.

• We assume that an observed pure noise vector x1, x2, ..., xn contains
n realizations of a same random variable X : Ω⇒ R with mean µ
and variance σ2.

• If we assume that the n realizations are mutually independent, the
mean µ and variance σ2 of X can be estimated via the formulas:

µ̂ =
1

n

n∑

i=1

xi , σ̂2 =
1

n

n∑

i=1

(
xi − µ̂

)2
.
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Howto reduce noise by averaging

• Having performed the noise calibration, we realize that the
signal-to-noise ratio of our device is so poor that important
features of the signal are cluttered under the noise.

• We may repeat the measurement nSim times and average the
noisy signals in the hope of reducing the variance of the noise
component.

• How many measurements do we need to reach a desired
signal-to-noise ratio?
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Howto reduce noise – continue

• If xk ∈ Rn denotes the noise vector observed in the k-th
repeated measurement, the average noise vector x becomes:

x =
1

nSim

nSim∑

k=1

(
xk
)
∈ Rn .

• From the CLT we know that, as nSim→∞, x becomes
Gaussian distributed with mean µ and variance going to zero
like σ2/nSim.

• To obtain, hence, a signal whose variance is below a given
threshold value τ2, we need to choose nSim such that:
σ2/nSim < τ2.
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Howto reduce noise – Graphical illustration

To demonstrate the noise reduction by averaging, we generate 25
standard Gaussian noise vectors of dimension n = 50, and average
them.

nSim=25

xn = rep(0,50)

for (i in 1:nSim) {

xn = xn + rnorm(50,0,1)

}

xn = xn/nSim

plot(xn,type="l",ylim=c(-2,2),

xlab="noise level with nSim=25",

ylab="signal N(0,1)",col="red")

n = 2/sqrt(nSim)

abline(h=+n,lty=2,col="blue")

abline(h=-n,lty=2,col="blue")
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Exercise

1. Reconsider the previous noise reduction problem when
observing a Gaussian noise X with estimated mean µ̂ and
variance σ̂2. How many measurements nSim must be made in
order to assure that 95.5% of the realizations will appear
between µ± σ̂.

2. Realize a grahical illustration of your solution when assuming
a standard Gaussian noise.
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How fast converges the average?

Let us sample the mean of i.i.d. Gaussian variables Xi ∼ N (µ = 0, σ = 1). The
LLN tells us that the sampled mean will approach certainly the common mean
value 0 with a standard deviation σ/

√
nSim. How fast is this convergence ?

> nSim = 1000

> mn = rep(0,nSim)

> dn = rnorm(nSim)

> for (i in 1:nSim) {

+ mn[i] = mean(dn[1:i])}

> plot(mn,type="l",col="red")

> abline(h=0,lty=2)
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And if there are potential outliers?

Let us now consider the ratio X/Y of two independent standard
Gaussian variables N (µ = 0, σ = 1). This ratio has a cumulative
density function:

P[X/Y 6 z ] =
1

2π

∫ ∫

x/y6z
exp
(
−1

2
x2
)
exp(−1

2
y 2
)
dxdy , z ∈ R.

which becomes a Cauchy density with mode 0 and spread 1:

P[X/Y 6 z ]′z =
1

π(1 + z2)
, z ∈ R.

The Cauchy distribution, also called after Lorentz, has no finite
mean and variance and the LLN will not work in this case.
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The “heavily tailed” Cauchy distribution

The parameters of the Cauchy are the mode (called location in R) and a scale
factor which may be aligned to match with the standard deviation concept.
The solid red curve below is a Cauchy density with mode = 0 and scale 1. The
dashed blue curve is a Gaussian density with same density peak at value 1/π at
mean (or mode) 0 and standard deviation

√
π/2 = 1.253314.

> x = seq(-10,10,by=0.1)

> plot(x,dcauchy(x,0,1),

+ "l",lwd=2,col="red")

> lines(x,dnorm(x,0,1.253),

+ lwd=2,lty=5,col="blue")

> abline(h=0,v=0,lty=2)
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Non convergence of the Cauchy average?

Let us sample the mean of 1000 i.i.d. Gauchy variables with location = 0 and
scale = 1.

> nSim = 1000

> mn = rep(0,nSim)

> dc = rcauchy(nSim,0,1)

> for (i in 1:nSim) {

+ mn[i] = mean(dn[1:i])}

> plot(mn,type="l",

+ col="red")

> abline(h=0,lty=2)

13 / 24

Content of the lecture The benefit from averaging Convergence of the averaging Comparing two empiric means

Comparing sampled averages’ standard deviations
The Figure below compares the standard deviation from samples of size
N = 1 : 100 drawn from a standard uniform, Gaussian, and Cauchy random
sequence of size 10 000. This is a log-log plot where σ/

√
N appears as a more

or less straight line with slope ≈ −1/2 for the uniform and Gaussian
distributions, wheras the Cauchy sample mean will evolve erratically.

> nSim = 10000

> sdc = rep(0,100)

> dc = rcauchy(nSim,0,1)

> for (N in 1:100) {

+ sampc = sample(dc,N)

+ sdc[N] = sd(sampc

+ - mean(sampc))/sqrt(N)}

lsdc = log10(sdc[-1])

logN = log10(2:100)

plot(logN,lsdc,type="l",

+ col="red")
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The t statistic
Suppose we have two independent samples x1, x2, ..., xm and
y1, y2, ..., yn from statistical variables X and Y , and we wish to
test the null hypothesis H0 : µX == µY that the actual means of
both variables X and Y are in fact the same.
The standard test for this H0 is based on the t-statistic:

T =
x − y

σp
√

(1/m + 1/n)

where x and y are the resepective observed sample means, and σp
is the pooled standard deviation:

σp =

√
(m − 1)σ2

x + (n − 1)σ2
y

m + n − 2
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Robustness of the t Statistics

Under H0, T ∼ T (df = m + n − 2). Suppose the level of
signficance of the test is set at α, then one rejects H0 when
|T | > tn+m−2,α/2 where tdf ,p is the 1− p quantile of a t random
variable with df degrees of freedom.
The underlying assumptions of the test are:

1. X and Y are independent normal distributed variables,

2. X and Y admit the same variance.

An interesting problem is to investigate the robustness of this
popular test with respect to changes in the assumptions.
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Writing a function to estimate the t Statistic

Here some R commands for computing
a t statistic:

> X = rnorm(10,mean=50,sd=10)

> Y = rnorm(10,mean=50,sd=10)

> m = length(X)

> n = length(Y)

> sp = sqrt(( (m-1)*sd(X)^2 +

+ (n-1)*sd(Y)^2 ) / ( m+n -2) )

> t = ( mean(X) - mean(Y) ) /

+ ( sp * sqrt(1/m + 1/n) )

We may write a R function tstatistic

to compute these results in the future.

The following text is saved in file
“tstatistics.R”:

tstatistic = function(X,Y)

{

m = length(X)

n = length(Y)

sp = sqrt(( (m-1)*sd(X)^2 +

(n-1)*sd(Y)^2 ) / ( m+n -2) )

t = ( mean(X) - mean(Y) ) /

( sp * sqrt(1/m + 1/n) )

return(t)

}

We may load this function in R with the
command > source("tstatistic.R").
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true significance of H0 rejection test

True significance of the t statistic will depend on:

• the required α level of significance of the test,

• the shape of the distributions X and Y ,

• the spreads of the distributions X and Y , and

• the sample sizes m and n.
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Monte Carlo simluation of the H0 rejection

Given a particular choice of α, shape, spreads, and sample sizes,
we wish to estimate the true signficance level of the H0 rejection
test given by:

αT = P(|T | > tn+m−2,α/2)

Here an outline of a simulation algorithm: Repeat nSim times:

1. generate independent sequences of the X and Y random
variables,

2. compute the empirical T statistic from the two samples,

3. if |T | exceeds the theoretical t value, reject H0

The estimate α̂T of the true significance is given as the ratio of
the number of rejections of H0 over nSim.
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Robustness of the true significance level

Exercise
Suppose we fix the required significance level at α = 0.1 and keep
the sample sizes at m = 10 and n = 10. One may simulate
nSim = 104 t-statistics with the following assumptions:

1. normal Z variables (zero means and spreads of one)

2. normal variables with zero means and spreads of one,
respectively 10,

3. T variables with 4 dfs and equal spreads,

4. exponential variables with equal mean of one,

5. one normal variable (mean=10, sd=2) and one exponential
variable with mean = 10.
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Graphical illustration of the T distributions

We may illustrate the empirical T distribution for instance in the
fourth case where we suppose a normal and an exponential
variable.
We suppose that the nSim simulated values of the t statistic are
gathered in a tstat vector:

> tstat = rep(0,nSim)

> for (i in 1:nSim){

+ X=rnorm(10,mean=10,sd=2)

+ Y=rexp(10,rate=1/10)

+ tstat[i] = tstatistic(X,Y) }

> plot(density(tstat),xlim=c(-5,8),

+ ylim=c(0,.4), lwd=3, col="red")

> x = seq(-5,8,length=200)

> lines(x,dt(x,df=18),col="blue")

> legend(4,.3,c("exact","t(18)"),

+ lwd=c(3,1), col=c("red","blue"))
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Exercise

Exercise (Robustness of the confidence interval of proportions)

Suppose one observes a random variable X that is supposed to be
binomially distributed with a sample size n and a success
probability of p. The standard 90% confidence interval of p is
given by

C (X ) =
[

p̂ − z0.9

√
p̂(1− p̂)

n
, p̂ + z0.9

√
p̂(1− p̂)

n

]
,

where p̂ =
∑

X/n.
We rely in this approach on the assumption that
P(p ∈ C (X )) = 0.90 for all 0 < p < 1.
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Exercise – continue
Exercise (Robustness of the confidence interval of proportions)
Questions:

1. Write a R-function called binomialConfInterval that returns the
limits of a 90% confidence interval for a simulation of a binomial
random variable X with sample size n.

2. Simulate nSim = 1000 times the computation of the confidence
interval when n = 20 and the true value of p is 0.5 and estimate the
true probability of coverage.

3. Construct a Monte Carlo study that investigates how the probability
of coverage depends on the sample size n and true proportion value.
Let n take the values 10,25, and 50 and let p be 5%, 25%, and
50%. The number of simulations nSim be 1000 in each case.

4. Write a function that takes three arguments: n, p and nSim, and
returns the estimate of the true coverage probability.

5. Describe how the actual coverage probability of the confidence
interval estimate depends in fact on the sample size and true
success proportion of the underlying binomial process.


