Content of the lecture O	The benefit from averaging 0 000 00	Convergence of the averaging O O OO OO	Comparing two empiric means 0 00 000000	Content of the lecture ●	The benefit from averaging 0 000 00	Convergence of the averaging 0 0 00 00	Comparing two empiric means 0 00 0 000000		
				Content of lecture 7					
Computational Statistics Lesson 7: On "Averaging"				 The benefit from averaging The Law of Large Numbers Estimate distribution parameters Howto reduce noise – Graphical illustration 					
Raymond Bisdorff				2. Convergence of the averaging Convergence of the mean for a standard Gaussian And if there are potential outliers?					
	University	y of Luxembourg		Non convergence of the average for a Cauchy					
December 6, 2019				3. Comparing two empiric means Robustness of the t statistic Estimate the t Statistics Monte Carlo simulation of the H_0 rejection					

		1/24				2 / 24
The benefit from averaging	Convergence of the averaging	Comparing two empiric means	Content of the lecture	The benefit from averaging	Convergence of the averaging	Comparing two empiric means
•	0	0	0	0	0	0
000	0	00		00	0	00
00	00	0		00	00	0
	00	000000			00	000000

The Law of Large Numbers

 Assume that X₁, X₂, ..., X_n are independent and identically distributed random variables with finite mean μ and variance σ². Then

$$\lim_{n\to\infty}\frac{1}{n}(X_1+X_2+\ldots+X_n) = \mu$$

almost certainly.

- The expression almost certainly means that, with probability one, the averages of any realization x₁, x₂, ... of the random varaibles X₁, X₂, ... converge toward their common mean μ.
- This is good news, since many observed data sets concern multiple realizations of some random variables.

Estimating noise distribution parameters

- Assume that we have a measurement device whose output is a noisy signal; meaning that the signal observed contains a noise component.
- By attaching the device to a dummy load whose theoretical noiseless output we know, we may calibrate the proper noise level of the device, by subtracting this theoretical output, to obtain its pure noise level.
- We assume that an observed pure noise vector $x_1, x_2, ..., x_n$ contains n realizations of a same random variable $X : \Omega \Rightarrow \mathbb{R}$ with mean μ and variance σ^2 .
- If we assume that the *n* realizations are mutually independent, the mean μ and variance σ^2 of X can be estimated via the formulas:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2.$$

re	The benefit from averaging	Convergence of the averaging	Comparing two empiric means
	0	0	0
	000	Õ	00
	00	00	0
		00	000000
		00	000000

Howto reduce noise by averaging

Convergence of the averaging

The benefit from averaging

000

- Having performed the noise calibration, we realize that the signal-to-noise ratio of our device is so poor that important features of the signal are cluttered under the noise.
- We may repeat the measurement *nSim* times and average the noisy signals in the hope of reducing the variance of the noise component.
- How many measurements do we need to reach a desired signal-to-noise ratio?

Howto reduce noise - continue

• If $x^k \in \mathbb{R}^n$ denotes the noise vector observed in the *k*-th repeated measurement, the average noise vector \overline{x} becomes:

$$\overline{x} = \frac{1}{nSim} \sum_{k=1}^{nSim} (x^k) \in \mathbb{R}^n$$

- From the CLT we know that, as $nSim \rightarrow \infty$, \overline{x} becomes Gaussian distributed with mean μ and variance going to zero like $\sigma^2/nSim$.
- To obtain, hence, a signal whose variance is below a given threshold value τ^2 , we need to choose *nSim* such that: $\sigma^2/nSim < \tau^2$.

5 / 24							
Content of the lecture o	The benefit from averaging ○ ○○○ ●○	Convergence of the averaging 0 0 00 00	Comparing two empiric means 0 00 0 000000	Content of the lecture O	The benefit from averaging ○ ○○○ ○●	Convergence of the averaging 0 0 00 00	Comparing two empiric means 0 00 0 000000

Howto reduce noise - Graphical illustration

To demonstrate the noise reduction by averaging, we generate 25 standard Gaussian noise vectors of dimension n = 50, and average them.

```
nSim=25
xn = rep(0,50)
for (i in 1:nSim) {
    xn = xn + rnorm(50,0,1)
}
xn = xn/nSim
plot(xn,type="l",ylim=c(-2,2),
    xlab="noise level with nSim=25",
    ylab="signal N(0,1)",col="red")
n = 2/sqrt(nSim)
abline(h=+n,lty=2,col="blue")
abline(h=-n,lty=2,col="blue")
```


Exercise

- 1. Reconsider the previous noise reduction problem when observing a Gaussian noise X with estimated mean $\hat{\mu}$ and variance $\hat{\sigma}^2$. How many measurements nSim must be made in order to assure that 95.5% of the realizations will appear between $\mu \pm \hat{\sigma}$.
- 2. Realize a grahical illustration of your solution when assuming a standard Gaussian noise.

2. Convergence of the averaging

The Law of Large Numbers

Howto reduce noise – Graphical illustration

And if there are potential outliers?

Convergence of the mean for a standard Gaussian

Non convergence of the overege for a Couchy

Convergence of the averaging

The benefit from averaging

Convergence of the averaging

How fast converges the average?

Let us sample the mean of i.i.d. Gaussian variables $X_i \sim \mathcal{N}(\mu = 0, \sigma = 1)$. The LLN tells us that the sampled mean will approach certainly the common mean value 0 with a standard deviation σ/\sqrt{nSim} . How fast is this convergence ?

3. Comparing two empiric means Robustness of the t statistic Estimate the t Statistics Monte Carlo simulation of the H_0 rejection		<pre>> dn = rnorm(nSim) > for (i in 1:nSim) { + mn[i] = mean(dn[1:i])} > plot(mn,type="l",col="red") > abline(h=0,lty=2)</pre>	.0.6 .0.4 .0.2	0 200	400 Sample s	60 size: 1:Ns
	9 / 24					

Content of the lecture	The benefit from averaging	Convergence of the averaging	Comparing two empiric means	Content of the lecture	The benefit from averaging	Convergence of the averaging	Comparing two empiric means
0	0	0	0	0	0	0	0
	000	0	00		000	0	00
	00	•0	0		00	0.	0
		00	000000			00	000000

And if there are potential outliers?

Let us now consider the ratio X/Y of two independent standard Gaussian variables $\mathcal{N}(\mu = 0, \sigma = 1)$. This ratio has a cumulative density function:

$$P[X/Y \leqslant z] = \frac{1}{2\pi} \int \int_{x/y \leqslant z} \exp\left(-\frac{1}{2}x^2\right) \exp\left(-\frac{1}{2}y^2\right) dx dy, \quad z \in \mathbb{R}.$$

which becomes a Cauchy density with mode 0 and spread 1:

$$P[X/Y\leqslant z]_{z}^{\prime} \;=\; rac{1}{\pi(1+z^{2})}, \quad z\in \mathbb{R}$$

The Cauchy distribution, also called after Lorentz, has no finite mean and variance and the LLN will not work in this case.

The "heavily tailed" Cauchy distribution

The parameters of the Cauchy are the mode (called location in R) and a scale factor which may be aligned to match with the standard deviation concept. The solid red curve below is a Cauchy density with mode = 0 and scale 1. The dashed blue curve is a Gaussian density with same density peak at value $1/\pi$ at mean (or mode) 0 and standard deviation $\sqrt{\pi/2} = 1.253314$.

10/24

Non convergence of the Cauchy average?

Let us sample the mean of 1000 i.i.d. Gauchy variables with location = 0 and scale = 1.

1. The benefit from averaging

The Law of Large Numbers Estimate distribution parameters Howto reduce noise – Graphical illustration

2. Convergence of the averaging

Convergence of the mean for a standard Gaussian And if there are potential outliers? Non convergence of the average for a Cauchy

3. Comparing two empiric means

Robustness of the t statistic Estimate the t Statistics Monte Carlo simulation of the H_0 rejection

Comparing sampled averages' standard deviations

The Figure below compares the standard deviation from samples of size N = 1: 100 drawn from a standard uniform, Gaussian, and Cauchy random sequence of size 10 000. This is a log-log plot where σ/\sqrt{N} appears as a more or less straight line with slope $\approx -1/2$ for the uniform and Gaussian distributions, wheras the Cauchy sample mean will evolve erratically.

- /				/
c means	Content of the lecture	The benefit from averaging	Convergence of the averaging	Comparing two empiric means
	0	0 000 00	0 0 00 00	0 •0 0 000000

The t statistic

Suppose we have two independent samples $x_1, x_2, ..., x_m$ and $y_1, y_2, ..., y_n$ from statistical variables X and Y, and we wish to test the null hypothesis $H_0: \mu_X == \mu_Y$ that the actual means of both variables X and Y are in fact the same.

The standard test for this H_0 is based on the t-statistic:

$$T = \frac{\overline{x} - \overline{y}}{\sigma_p \sqrt{(1/m + 1/n)}}$$

where \overline{x} and \overline{y} are the resepective observed sample means, and σ_p is the *pooled* standard deviation:

$$\sigma_p = \sqrt{\frac{(m-1)\sigma_x^2 + (n-1)\sigma_y^2}{m+n-2}}$$

14/24

The benefit from averaging Convergence of the averaging O

Comparing two empiric means o

Content of the lect

The benefit from averaging 0 000

Convergence of the averaging 0 0 00 Comparing two empiric means

Robustness of the t Statistics

Under H_0 , $T \sim \mathcal{T}(df = m + n - 2)$. Suppose the level of significance of the test is set at α , then one rejects H_0 when $|\mathcal{T}| \ge t_{n+m-2,\alpha/2}$ where $t_{df,p}$ is the 1 - p quantile of a t random variable with df degrees of freedom.

The underlying assumptions of the test are:

- 1. X and Y are independent normal distributed variables,
- 2. X and Y admit the same variance.

An interesting problem is to investigate the robustness of this popular test with respect to changes in the assumptions.

Here some R commands for computing a t statistic:

> X = rnorm(10,mean=50,sd=10)
> Y = rnorm(10,mean=50,sd=10)
> m = length(X)
> n = length(Y)
> sp = sqrt(((m-1)*sd(X)^2 +
+ (n-1)*sd(Y)^2) / (m+n -2))
> t = (mean(X) - mean(Y)) /
+ (sp * sqrt(1/m + 1/n))

We may write a R function ${\tt tstatistic}$ to compute these results in the future.

The following text is saved in file "tstatistics.R":

```
tstatistic = function(X,Y)
{
  m = length(X)
  n = length(Y)
  sp = sqrt(( (m-1)*sd(X)^2 +
     (n-1)*sd(Y)^2 ) / ( m+n -2) )
  t = ( mean(X) - mean(Y) ) /
   ( sp * sqrt(1/m + 1/n) )
  return(t)
}
```

We may load this function in R with the command > source("tstatistic.R").

true significance of H_0 rejection test

True significance of the t statistic will depend on:

- the required α level of significance of the test,
- the shape of the distributions X and Y,
- the spreads of the distributions X and Y, and
- the sample sizes *m* and *n*.

Monte Carlo similation of the H_0 rejection

Given a particular choice of α , shape, spreads, and sample sizes, we wish to estimate the true significance level of the H_0 rejection test given by:

$$\alpha^{T} = P(|T| \ge t_{n+m-2,\alpha/2})$$

Here an outline of a simulation algorithm: Repeat *nSim* times:

- 1. generate independent sequences of the X and Y random variables,
- 2. compute the empirical T statistic from the two samples,
- 3. if |T| exceeds the theoretical t value, reject H_0

The estimate $\hat{\alpha}^T$ of the true significance is given as the ratio of the number of rejections of H_0 over *nSim*.

Comparing two empiric means

00000

Robustness of the true significance level

Exercise

Suppose we fix the required significance level at $\alpha = 0.1$ and keep the sample sizes at m = 10 and n = 10. One may simulate $nSim = 10^4$ t-statistics with the following assumptions:

- 1. normal Z variables (zero means and spreads of one)
- 2. normal variables with zero means and spreads of one, respectively 10,
- 3. T variables with 4 dfs and equal spreads.
- 4. exponential variables with equal mean of one,
- 5. one normal variable (mean=10, sd=2) and one exponential variable with mean = 10.

			21 / 24				
Content of the lecture o	The benefit from averaging 0 000 00	Convergence of the averaging 0 0 0 00 00	Comparing two empiric means ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○				
Eventier							

Exercise (Robustness of the confidence interval of proportions)

Suppose one observes a random variable X that is supposed to be binomially distributed with a sample size n and a success probability of p. The standard 90% confidence interval of p is given by

$$C(X) = \left[\hat{p} - z_{0.9}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + z_{0.9}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$$

where $\hat{p} = \sum X/n$. We rely in this approach on the assumption that $P(p \in C(X)) = 0.90$ for all 0 .

Graphical illustration of the T distributions

We may illustrate the empirical T distribution for instance in the fourth case where we suppose a normal and an exponential variable.

We suppose that the nSim simulated values of the t statistic are gathered in a tstat vector:

The benefit from averaging

Exercise – continue

Exercise (Robustness of the confidence interval of proportions) Questions:

- 1. Write a R-function called binomialConfInterval that returns the limits of a 90% confidence interval for a simulation of a binomial random variable X with sample size n.
- 2. Simulate nSim = 1000 times the computation of the confidence interval when n = 20 and the true value of p is 0.5 and estimate the true probability of coverage.
- 3. Construct a Monte Carlo study that investigates how the probability of coverage depends on the sample size n and true proportion value. Let n take the values 10,25, and 50 and let p be 5%, 25%, and 50%. The number of simulations nSim be 1000 in each case.
- 4. Write a function that takes three arguments: n, p and nSim, and returns the estimate of the true coverage probability.
- 5. Describe how the actual coverage probability of the confidence interval estimate depends in fact on the sample size and true success proportion of the underlying binomial process.