ontent	of	the	lecture	

ogy Comparing O OOOOOO

Computational Statistics

Lecture 6: Two distributions, are they of the same kind ?

Raymond Bisdorff

University of Luxembourg

29 novembre 2019

Comparing contin 0 00

Comparing continuous distributions Content of the lecture

Methodology

Comparing histo

Comparing continuous distributions 0 00

Content of Lecture 6

1. Methodology

Comparing statistical distributions Methodological approach Statistical tests

2. Comparing histograms

Chi-square test against a known distribution Comparing two binned data sets Testing uniform randomness

3. Comparing continuous distributions

Kolmogorov-Smirnov Test Kolmogorov-Smirnov Test in R

	2 / 26						
Content of the lecture	Methodology	Comparing histograms	Comparing continuous distributions	Content of the lecture	Methodology	Comparing histograms	Comparing continuous distributions
)	•	0	0	0	0	0	0
	õ	00000	õ		ō	00000	õ

Comparing statistical distributions

- Given two sequences of random numbers, we can ask the question : "Are the two sequences drawn from a same random number generator, or from different generators?"
- In proper statistical terms : "Can we disprove, to a certain required level of significance that two data sets are drawn from the same population distribution function ?"
- Disproving the null hypothesis proves that the data are from different random distributions.
- Failing to disprove, on the othe hand, only shows that the data sets appear to be consistent with being generated from a same distribution function.

Methodological approach

Four problems may appear from two dichotomies :

- 1. The data are either :
 - 1.1 continuous, or
 - 1.2 binned.
- 2. We wish to compare either
 - $2.1\,$ one data set to a known distribution, or
 - 2.2 two equally unknown data sets.

mparing continuous distribu

Content of the lecture O

Statistical tests

- The usual test for differences between binned data is the Chi-square *goodness-of-fit* test.
- For continuous data as a function of a single variable, the usual test is the Kolmogorov-Smirnov test.
- One can always turn continuous data into binned data, by grouping the observed data into specified ranges of the continuous variable(s).
- There is however often some arbitrariness as how the bins should be chosen; how many bins, with equal sizes or not?
- Furthermore, binning always involves some loss of information. Even more, when uniform distributions of observations are not verified within all bins.
- Mind that statistical summaries are not truthful per se. They are merely numerical or graphical arguments supporting one or the other hypothesis concerning the observed data.

			5 / 26
Content of the lecture O	Methodology O O O	Comparing histograms ● ● 00000 00000 00000	Comparing continuous distributions 0 00 0

Chi-square test against a known distribution

- Consider a random sequence grouped into $\boldsymbol{\upsilon}$ bins.
- Suppose that N_i is the number of events observed in the *i*th bin, and that n_i is the number of expected events according to some known distribution. Note that the N_i 's are integers, while the n_i 's may not be.
- Then the Chi-square "goodness-of-fit" test statistic is :

$$\chi^2 = \sum_{i=1}^{\upsilon} \frac{(N_i - n_i)^2}{n_i}$$

where the sum runs over all $\boldsymbol{\upsilon}$ bins.

• A value of $\chi^2 \gg v$ indicates that a "goodness-of-fit" is rather unlikely.

1. Methodology

Comparing statistical distributions Methodological approach Statistical tests

2. Comparing histograms

Chi-square test against a known distribution Comparing two binned data sets Testing uniform randomness

. Comparing continuous distributions Kolmogorov-Smirnov Test Kolmogorov-Smirnov Test in R

Uniformity Chi-Square *goodness-of-fit* Test in R

6/26

Let us test if the R runif generator is giving consistent data with a uniform distribution. The R chisq.test method implements this *goodness-of-fit* test.

$> nSim = 10^4$

- > x = runif(nSim)
- > freq = hist(x)
- > Ni = freq\$counts
- > upsilon = length(Ni)
 [1] 20
- > ni = rep(nSim/upsilon,upsilon)
- > hi = rep(nbim/upsilon,upsilon, > chi2 = sum((Ni-ni)^2/ni)
- [1] 18.4988
- > df = upsilon 1
- > pvalue = 1.0 pchisq(chi2,df)
 [1] 0.4893842
- > chisq.test(Ni)
- X-squared = 18.4988 df = 19 p-value = 0.4893842

Content of the lecture	Methodology	Comparin
0	0	0
	õ	00000

Comparing histograms

Chi-square Test – continue

- Any term *i* with $0 = n_i = N_i$ should be omitted from the sum.
- A term with $n_i = 0$ and $N_i \neq 0$ gives an infinite χ^2 , as it should, since in this case the N_i 's cannot possibly be drawn from these n_i 's.
- The $P(\chi^2|v)$ probability function with degree of freedom v is the probability that the sum of the squares of v standard Gaussian variables of unit variance and 0 mean will be greater than χ^2 .
- The terms in the sum of the χ^2 measure are only good approximations of squares of random standard normal variables when $N_i \gg 1$ in each bin.
- Usually, the binning process gives a constrained last bin content. Hence, the degree of freedom of P(χ²|v) is only v − 1!

Content of the lecture	Methodology	Comparing histograms	Comparing continuous distributions
0	0	0	0
	0	000000	00
	0	00000	0
		00000	

Exercise (Chi-square "goodness-of-fit" tests)

- 1. How to apply a Chi-square "goodness-of-fit" tests to samples taken with a $\mathcal{B}(2,2)$ random number generator?
- 2. How to check the accuracy of random sampling from the empirical random law shown on slide 12/34 of lecture 3?
- 3. May the random sequences obtained with a Mersenne twister RNG versus the ones obtained from a linear congruational RNG be discriminated by the Chi-square "goodness-of-fit" test?
- 4. What is the distribution of p-values for samples of size n = 10⁴ of uniform random numbers generated with runif(n) ?

Significance of the goodness-of-fit test

- The $P(\chi^2|v)$ probability function gives via the *p*-value a good estimate for the actual significance of the chi-square goodness-of-fit test.
- The *p*-value equals the probability that the Chi-square test may give, under the "goodness-of-fit" hypothesis, a result greater or equal than x: $\mathcal{P}(\chi^2|v \ge x) = 1.0 - \mathcal{P}(\chi^2|v \le x).$
- The higher, resp. the smaller, the *p*-value, the more the goodness-of-fit is likely, resp. unlikely.
- If a certain significance level is required, like 95% for instance, then the *goodness-of-fit* hypothesis is rejected if the *p*-value is smaller than 5%.

Source : https ://en.wikipedia.org/wiki/P-value

Checking *goodness-of-fit* of a $\mathcal{B}(2,2)$ sample

9/26

Comparing *two* binned data sets of same size

- Let R_i be the number of events observed in the *i*th bin for the first data set, and let S_i be the number of events in the same bin for data set two.
- Then the chi-square "goodness-of-fit" test statistic is :

$$\chi^{2} = \sum_{i=1}^{v} \frac{(R_{i} - S_{i})^{2}}{R_{i} + S_{i}}$$

where the sum runs over all $\boldsymbol{\upsilon}$ bins.

• If the data were collected in such a way that the sum of R_i 's is necessarily equal to the sum of the S_i 's, then the number of degrees of freedom is one less than the number v of bins.

Comparing two binned data sets of different size

- Let R_i be the number of events observed in the *i*th bin for the first data set, and let S_i be the number of events in the same bin for data set two.
- Then the chi-square "goodness-of-fit" test statistic is :

$$\chi^{2} = \sum_{i=1}^{v} \frac{(\sqrt{S/R}R_{i} - \sqrt{R/S}S_{i})^{2}}{R_{i} + S_{i}}$$

where $R := \sum_{i} R_{i}$ and $S := \sum_{i} S_{i}$.

- The number of degrees of freedom is still one less than the number $\boldsymbol{\upsilon}$ of bins.

	14 / 26						
Content of the lecture	Methodology	Comparing histograms	Comparing continuous distributions	Content of the lecture	Methodology	Comparing histograms	Comparing continuous distributions
0	0	0	0	0	0	0	0
	0	000000	00		0	000000	00
	0	00000	0		0	00000	0
		00000				00000	

Problem with small number of counts

- When significant fractions of bins have a small number of counts (≤ 10 , say), then χ^2 statistics are not well approximated by a chi-square probability function.
- Under the "goodness-of-fit" hypothesis, the count in an individual bin, N_i , is following a Poisson law with $\lambda = n_i$ and each term $(N_i n_i)^2/n_i$ has $\mu = 1$ and $\sigma^2 = 2 + 1/n_i$.
- Each term in the χ^2 statistic adds, on average, 1 to its value, and slightly more than 2 to its variance.
- But, the variance of the chi-square probability function is exactly twice its mean. If a significant fraction of n_i 's are small, then quite probable values of the χ^2 statistic will appear to lie farther out on the tail than they actually are.
- Thus, the "goodness-of-fit" hypothesis may be rejected even when it is true.

Remedies with small number of counts

- Regroup the bins with small number of counts.
- When v, the number of bins, is large (> 30), the central limit theorem implies that the χ^2 statistic gets approximately a Gaussian distribution :

$$\chi^2 \rightsquigarrow \mathcal{N}\left(\upsilon, \left[2\upsilon + \sum_i n_i^{-1}\right]^{1/2}\right),$$

and *p*-values may be computed as a complement of the corresponding cumulated Gaussian distribution function.

• In the case of two binned data sets :

$$\sum_{i} n_i^{-1} \rightarrow \left[\frac{(R-S)^2}{RS} - 6 \right] \sum_{i} \frac{1}{R_i + S_i}$$

Remedies for small number of counts in R

A $P(\chi^2|v)$ cdf may be approximated with a Gaussian cdf when v > 30 as shown in R plot below.

tent of the lecture Methodology Comparing histograms Comparing contin

RNG Quality : Serial test

- We reconsider the auxilliary (Y_n) sequence with discrete grain d and count the number of times the pair (y_{2j}, y_{2j+1}) = (q, r) occurs, for 0 ≤ j < n/2, q ≠ r and 0 ≤ q, r ≤ d.
- These counts are to be made for each pair of integers (q, r) with 0 ≤ q, r ≤ d, and the Chi-square "goodness-of-fit" test is applied to these k = d² categories with theoretical uniform relative frequency 1/d² in each category.
- To keep the length n of the random sequence large compared to k, d will be chosen of smaller value than for the equidistributional test.

RNG Quality : Testing equidistribution

Let $\langle U_n \rangle = [u_0, u_1, u_2, ...]$ be a sequence of random numbers from the float interval [0.0; 1.0) apparently generated in a uniformly manner. To test the quality of the random generator, we consider the auxiliary sequence $\langle Y_n \rangle = [y_0, y_1, y_2, ...]$ defined by the rule $y_n = \lfloor d \times u_n \rfloor$, where d is a positive integer – usually 64, 100, or 128 – also called the *discrete grain* of the generator.

When sequence $\langle U_n \rangle$ is indeed uniformly distributed, we will observe a sequence $\langle Y_n \rangle$ of equidistributed integers between 0 and d - 1. The quality of a given random generator may now be assessed with a two-tailed Chi-square "goodness-of-fit" test between the empirical N_i distribution and the theoretical uniform $n_i = 1/d$ distribution. A p-value below 5% or above 95% indicates the very likeliness of a suspicious non-randomness in $\langle U_n \rangle$.

RNG Quality : Gap test

00000

Comparing histograms

- Another test is to examine the length of "gaps" between occurences of u_j in a certain range. If α and β are two real numbers with 0 ≤ α < β ≤ 1, we want to consider the lengths of consecutive subsequences [u_j, u_{j+1}, ..., u_{j+r}] in which the consecutive r values u_{j+k}, for k = 1, ...r, remain between α and β. This situation will be counted as a gap of length r.
- With given values α and β and a maximal gap length t, let C_r for r = 0, ..., t 1 count the occurences of gaps of length 0, ..., t 1, and C_t the gaps of length $r \ge t$. If $p = \beta \alpha$, the theoretical counts for each gap length r, is $p_r = p(1-p)^r$ for $0 \le r < t 1$ and $p_t = (1-p)^t$.
- Again, a Chi-square "goodness-of-fit" test, comparing the C_r with the p_r distribution may be used in order to assess the likeliness of a suspicious non-randomness of the gap lengths observed in the sequence $\langle U_n \rangle$.

18/26

Comparing continuous distributions

Content of the lecture Methodology Comparing histograms O O O O O O O O O O O O O O O O O O O	Comparing continuous distributions 0 00 0	Content of the lecture O	Methodology O O O	Comparing histograms ○ ○○○○○ ○○○○○ ○○○○●	Compa O OO O
---	--	-----------------------------	----------------------------	--	-----------------------

RNG Quality : Coupon collector's test

- This test relates the frequency test to the previous gap test. We use the auxiliary sequence ⟨Y_n⟩ and we observe the lengths of subsequences y_{j+1}, y_{j+2}, ..., y_{j+r} that are required to get a complete set of integers – a coupon collector seqment – from 0 to d − 1.
- With a given maximal subsequence length t, let C_r for r = d,...,t − 1 count the occurences of coupon collector segments of length d, d + 1,...,t − 1, and C_t the segments of length r ≥ t.
- The theoretical count for each coupon collector segment of length *r*, is

$$p_r = rac{d!}{d^r} igg\{ egin{array}{c} r-1 \\ d-1 \end{array} igg\}, \quad d \leq r < t-1; \quad p_t = 1 - rac{d!}{d^r} igg\{ egin{array}{c} r \\ d \end{array} igg\}.$$

• Similarly, a Chi-square "goodness-of-fit" test, comparing the empirical C_r with the theoretical p_r distribution, may be used in order to assess the likeliness of a suspicious non-randomness of the coupon collector segments.

RNG Quality : Up and down runs test

- A sequence ⟨U_n⟩ of uniform random numbers may also be tested for "runs up" and "runs down" segments, by examining the length of monotone portions of it. Let [u_{j+0}, u_{j+1}, ..., u_{j+r}] be a subsequence of length r such that either u_{j+0} ≥ u_{j+1} ≥ ... ≥ u_{j+r}, or, u_{j+0} ≤ u_{j+1} ≤ ... ≤ u_{j+r}.
- Given a maximal subsequence length t, let C_r for r = 1, ..., t 1 count the occurences of separated monotone, either up, or, down runs of length 1, 2, ..., t 1, and C_t the same runs of length $r \ge t$.
- Assuming that a monotone run of length r occurs with probability 1/r! 1/(r+1)!, the theoretical relative count for each length r, gives $p_r = 1/r! 1/(r+1)!$ for r < t and $p_t = 1/t!$.
- And, again, we may use a Chi-square "goodness-of-fit" test, comparing the empirical C_r with the theoretical p_r distribution, for assessing the likeliness of a suspicious non-randomness of "runs up" or "runs down" segments.

21/20							22 / 20
Content of the lecture	Methodology	Comparing histograms	Comparing continuous distributions	Content of the lecture	Methodology	Comparing histograms	Comparing continuous distributions
0	0	0	•	0	0	0	0
	0	000000	00		0	000000	0
	0	00000	0		0	00000	0
		00000				00000	

1. Methodology

Comparing statistical distributions Methodological approach Statistical tests

2. Comparing histograms

Chi-square test against a known distribution Comparing two binned data sets Testing uniform randomness

3. Comparing continuous distributions

Kolmogorov-Smirnov Test Kolmogorov-Smirnov Test in R

Kolmogorov-Smirnov Test

- The ordered list of data points is converted into a cumulative distribution function of the probability distribution from which it has been drawn.
- If the N events are located at points x_i, i = 1, ..., N, then S_N(x) is giving the fraction of points to the left of a given value x.
- The Kolmogorov-Smirnov statistic *D* is defined as the maximum value of the absolute difference between two cumulative distribution functions.
- When comparing $S_N(x)$ to a known cdf P(x), the K-S statistic is

$$D = \max_{-\infty < x < +\infty} |S_N(x) - P(x)|$$

• For comparing two different cdf's, the K-S statistic is

$$D = \max_{-\infty < x < +\infty} |S_{N_1}(x) - S_{N_2}(x)|$$

ntent of the lecture	Methodology	Comparing histograms	Comparing continuous distributions	Content of the lecture	Methodology	Comparing histograms	Comparing continuous distributions
	0 0 0	0 000000 00000 00000	○ ⊙ ○	0	0 0 0	0 000000 00000 00000	0 00 ●

Kolmogorov-Smirnov Test – continue

• Testing the p-value significance of the K-S test is done with the complement $Q_{KS}(z) = 1 - P_{KS}(z)$ of the cdf $P_{KS}(z)$ of the K-S distribution for z > 0:

$$P_{KS}(z) = 1 - 2 \sum_{j=1}^{\infty} (-1)^{j-1} exp(-2j^2 z^2)$$

• The K-S statistic is invariant under reparametrization of the data set points. *D* remains the same when locally stretching and sliding the *x* axis. Using for instance *x* or log *x* in *D* will result in the same significance of the test.

Kolmogorov-Smirnov Test in R

• The *D* observed and its *p*-value as disproof of the null hypothesis that the distributions under review are the same is given by the R ks.test procedure.

25 / 26