
Selecting Computing quantiles IQ-agant

Computational Statistics
Lecture 5: Simulating from arbitrary empirical random

distributions

Raymond Bisdorff

University of Luxembourg

22 novembre 2019

1 / 28

Selecting Computing quantiles IQ-agant

Content of Lecture 5

1. Single-Pass estimation of arbitrary quantiles
Computing sample quantiles
Quantiles via selecting algorithms
Tracking the M largest in a single pass

2. Computing quantiles from binned data
Equally binned observation data
Linear interpolation formulas
Regular binned data quantiles

3. Incremental quantiles estimation : the IQ-agent
The incremental quantiles estimation algorithm
Using the IQ-agent

Monte Carlo simulations with the IQ-agent

2 / 28

Selecting Computing quantiles IQ-agant

Example of empirical data series

Consider the following empirical data series X gathering service time (in
minutes) measured for 51 units of health care actions in a hospital :

x = [21, 24, 24, 30, 30, 30, 30, 31, 31, 31,
31, 32, 32, 33, 33, 34, 34, 34, 34, 34,
36, 36, 36, 36, 37, 37, 38, 39, 40, 40,
41, 41, 41, 42, 42, 43, 43, 45, 46, 46,
46, 47, 48, 50, 51, 51, 55, 56, 56, 62,

62]

How to compute, for instance, quintiles :

[x0%, x20%, x40%, x60%, x80%, x100%]

where xα% corresponds to the service time such that α% of the observed
data in the series x are lower or equal to this value.

3 / 28

Selecting Computing quantiles IQ-agant

Example computation of sample quintiles

Number of data intervals n = length(x)− 1 = 50 and cumulative
probabilities p = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0].

xp[i] = x(n∗p[i]+1) for i = 1...6

Hence, x0% = x(1), x20% = x(11), x40% = x(21), x60% = x(31), x80% = x(41)
and x100% = x(51)

x = [21, 24, 24, 30, 30, 30, 30, 31, 31, 31,

31, 32, 32, 33, 33, 34, 34, 34, 34, 34,

36, 36, 36, 36, 37, 37, 38, 39, 40, 40,

41, 41, 41, 42, 42, 43, 43, 45, 46, 46,

46, 47, 48, 50, 51, 51, 55, 56, 56, 62,

62]

The method above corresponds to the default quantile() function
(type=7) in R. Mind that there is no standard definition for sample
quantiles computation ! !

4 / 28

Selecting Computing quantiles IQ-agant

R’s default sample quantile function

> X = read.csv(

+ ’minutes.csv’)

> x = X{1:51,]

> quantile(x,

+ seq(0,1,0.2))

0% 20% 40% 60% 80% 100%

21 31 36 41 46 62

> quantile(x,0.048)

4.8% 26.4

> quantile(x,0.1)

10% 30

>
23 24 25 26 27 28 2921 22 30

cdf(x)

31

26.4

0%

2%

4%

6%

8%

10%

12%

14%

16%

...%

4.8%

30

10%

R type=7 cumulative distribution functiom
of the service times series (partial graph)

minutes

5 / 28

Selecting Computing quantiles IQ-agant

Selecting the kth smallest or N − k largest

What is the kth smallest, equivalently the m = N − kth
largest element out of N preordered (with possible ties)
elements x(i) with i = 1, ...,N ?

Here k may take on values between 1 and N, so k = 1 gives
the minimum, and k = N the maximum value (R indexing
rule).

The most common use of selection is in statistical
characterization of a set of data by quantiles.

The quartiles Q0 = x0%, Q1 = x25%, Q2 = x50% (the median),
Q3 = x75%, and Q4 = x100% are the quantiles used for
summaries and boxplots for instance.

6 / 28

Selecting Computing quantiles IQ-agant

Selecting via partitioning

• The fastest method for selection, allowing rearrangement, is
partitioning, exactly as is done in the Quicksort algorithm.

• Selecting a random element, one marches through the array,
forcing smaller elements to the left and larger elements to the
right.

• One can ignore one subset, and continue only with the subset
containing the desired kth element. Selection therefore does
not need a stack of pending operations and its operations
count scales as N.

• For a C++/nr3 implementaton see the sort.h code.

7 / 28

Selecting Computing quantiles IQ-agant

Tracking the M largest in a single pass

• The previous partitioning approach should not be used for
finding the largest or smallest element in an array.

• When one is looking for the M largest elements, where M is
modest compared to N, the number of elements of the array,
a good approach is to keep a heap of the M largest values.
• This approach is implemented as a HeapSelect class with :

• a constructor where you specify M, the size of the heap,
• an add method allowing to add new incoming data values one

by one, and
• a report method for getting the kth largest seen so far

(1 6 k 6 M).

8 / 28

Selecting Computing quantiles IQ-agant

Heap select –continue

• The heap has to be sorted when reporting, but all k values
may be given without resorting when no new data value is
added meanwhile.

• A special case is that getting the M − 1st largest is always
cheap, since it is always at the top of the heap.

• So if you look for a single favorite k, it is best to choose M
sucht that M − 1 = k .

• For a C++/nr3 implementaton see the sort.h code.

9 / 28

Selecting Computing quantiles IQ-agant

1. Single-Pass estimation of arbitrary quantiles
Computing sample quantiles
Quantiles via selecting algorithms
Tracking the M largest in a single pass

2. Computing quantiles from binned data
Equally binned observation data
Linear interpolation formulas
Regular binned data quantiles

3. Incremental quantiles estimation : the IQ-agent
The incremental quantiles estimation algorithm
Using the IQ-agent

Monte Carlo simulations with the IQ-agent

10 / 28

Selecting Computing quantiles IQ-agant

Equally binned empirical data series
Reconsider the pre ordered data series X showing the time in minutes measured for 51
units of health care actions in hospital :

[21, 24, 24, 30, 30, 30, 30, 31, 31, 31, 31, 32, 32,

33, 33, 34, 34, 34, 34, 34, 36, 36, 36, 36, 37, 37,

38, 39, 40, 40, 41, 41, 41, 42, 42, 43, 43, 45, 46,

46, 46, 47, 48, 50, 51, 51, 55, 56, 56, 62, 62]

Table – Right-closed binning of data series X

bin low high center freq. f% F ↑ F* ↓
1]20 30] 25 7 13.7% 13.7% 100%
2]30 40] 35 23 45.1% 58.8% 86.7%
3]40 50] 45 14 27.5% 86.3% 41.2%
4]50 60] 55 5 9.8% 96.08% 13.7%
5]60 70] 65 2 3.9% 100% 3.9%

Working hypothesis !
Observations are uniformly distributed in each bin.

How to compute quantiles from the binned data series ?

11 / 28

Selecting Computing quantiles IQ-agant

Notations
Notation :

• X : a finite data series,

• n : number of bins,

• a0 < a1 < ... < am : set of n + 1 ordered real-valued breaks defined
on R. No observation in X may be lower than a0 or higher than an.

•]ai−1, ai] : a partition of R into n non overlapping upper-closed bins
with i = 1, ..., n,

• F (x) : cumulative distribution function (cdf), x ∈ R,

• F ∗(x) : complementary cdf : 1.0− F (x),

• F−1(p) : inverse cdf where p ∈ [0, 1],

• xp : quantile gathering in increasing order p% of the observation
data.

12 / 28

Example of binned observation data

100%

cdf(x)

706050403020

0%

x

P(X <= x)

F(x)

x

Cumulative distribution function from binned data

58.8%

13.7%

86.3%

96.1%

Selecting Computing quantiles IQ-agant

Linear cdf interpolation formula

Given xp, we are looking for p = F (xp). Now,

xp ∈]ai−1, ai] iff
(
ai ≥ xp > ai−1

)

Interpolation principle :

F (xp)− F (ai−1)

F (ai)− F (ai−1)
=

xp − ai−1
ai − ai−1

Interpolated cumulative distribution function F :

p = F (xp) = F (ai−1) +
xp − ai−1
ai − ai−1

× (F (ai)− F (ai−1)

14 / 28

Selecting Computing quantiles IQ-agant

Linear quantile interpolation formula

Given p = F (xp), we are looking for xp = F−1(p). Again,

xp ∈]ai−1, ai] iff
[(

F (ai) ≥ p
)
∧

(
F ∗(ai−1) ≥ 1− p

)]

iff
(
F (ai) ≥ p > F (ai−1)

)

Interpolation principle :

xp − ai−1
ai − ai−1

=
F (xp)− F (ai−1)

F (ai)− F (ai−1)

Interpolated quantile function F−1 :

xp = F−1(p) = ai−1 +
p − F (ai−1)

F (ai)− F (ai−1)
× (ai − ai−1)

15 / 28

Selecting Computing quantiles IQ-agant

Interpolating quartiles from binned data

i]ai−1 ai] center freq. f% F ↑ F* ↓
1 20 30 25 7 13.7% 13.7% 100%
2 30 40 35 23 45.1% 58.8% 86.7%
3 40 50 45 14 27.5% 86.3% 41.2%
4 50 60 55 5 9.8% 96.1% 13.7%
5 60 70 65 2 3.9% 100% 3.9%

(58.8% > 25% > 13.7%) ⇒ Q1 = x25% ∈]30; 40],

x25% = 30 +
25%− 13.7%

58.8%− 13.7%
× (40− 30) = 32.5 min.

Similarly, Q2 = x50% = 38.0 min. and Q3 = x75% = 45.9 min.
By convention, Q0 = x0% = x(1) = 21 min. and
Q4 = x100% = x(51) = 62 min.

16 / 28

Regular quartiles binning

0%

cdf(x)

75%

50%

25%

100%

Q1 Q2
21
Q0

62
Q4

Cumulative quartiles distribution function

32.5 38.0 45.9
Q3

Regular quartiles binning

0% 50% 75%25% 100%

21

62

from quantiles binning

x_p

p

Inverse cumulative distribution function

32.5

38

%

invcdf(%)

invcdf(p)

45.9

Selecting Computing quantiles IQ-agant

Enhancing exponential tail quantiles’ accuracy

Exponential tail quantiles’ accuracy may be improved by applying
non linear, i.e. a logit interpolation.

1. The logit interpolation of cumulated probability F (xp) of quantile
xp, with p ∈ [0, 1], situated in bin]ai−1; ai] with cumulated
probabilities F (ai−1) and F (a1) is defined as follows :

F (xp) = g−1
(

g(F (ai−1)) +
(
g(F (ai))− g(F (ai−1))

)
· xp − ai−1

ai − ai−1

)

where g(p) = log(p/(1− p)), and g−1(x) = (1 + exp(x))−1.

2. Inversely, quantile xp in bin]ai−1; ai] with F (ai−1) < p < F (ai), is
defined as follows :
xp = ρai−1 + (1− ρ)ai , where

ρ =
g(F (ai))− g(p)

g(F (ai))− g(F (ai−1))

19 / 28

Selecting Computing quantiles IQ-agant

1. Single-Pass estimation of arbitrary quantiles
Computing sample quantiles
Quantiles via selecting algorithms
Tracking the M largest in a single pass

2. Computing quantiles from binned data
Equally binned observation data
Linear interpolation formulas
Regular binned data quantiles

3. Incremental quantiles estimation : the IQ-agent
The incremental quantiles estimation algorithm
Using the IQ-agent

Monte Carlo simulations with the IQ-agent

20 / 28

Selecting Computing quantiles IQ-agant

Single-pass estimation of a quantile

Working conditions :

1. The data values fly by in a stream.

2. You get to look at each value once, and do a constant-time
process on it.

3. You only have a fixed amount of storage memory.

4. From time to time arbitrary quantiles of the data values seen
so far have to be reported.

With conditions stated, only an approximate answer about the
exact quantiles of the observed data may be given.

21 / 28

Selecting Computing quantiles IQ-agant

The incremental quantiles estimation algorithm

John Chambers et al. (see moodle resources) have given a
robust, and extremely fast, algorithm they call IQ agent, that
adaptively adjusts a set of bins so that they converge to the
data values of specified quantiles (centiles, quartiles, etc).

The idea is to :

1. accumulate incoming data into batches,
2. update a stored, piecewise linear, cumulative distribution

function (cdf) by :

2.1 adding a batch’s cdf, and
2.2 interpolate back to the fixed set of quantiles.

3. obtain arbitrary quantiles by linear interpolation from the
inverse of the stored cdf.

For a C++/nr3 implementation see the iqagent.h code.

22 / 28

Selecting Computing quantiles IQ-agant

Major steps in the IQ algorithm

1. Suppose that T data values have been processed so far.

2. The quantile buffer Q holds the estimated quantiles
[qp1 , qp2 , ..., qpm] for p% values :
[p1 = 0.01, p2 = 0.02, ..., pm = 0.99].

3. Refill the data buffer D = [d1, d2, ..., dN] with N new data
values.

4. If D is full or at prespecified times, D is converted into a
discrete CDF FD(x) (a step function, see lecture 4).

5. The quantile buffer Q is converted into a CDF FQ(x).

6. For all values x ∈ Q ∪ D, a weighted average CDF :
T/(T + N) · FQ(x) + N/(T + N) · FD(x) is computed.

7. Quantiles [p1 = 0.01, p2 = 0.02, ..., pm = 0.99] of the average
CDF are used to update Q.

23 / 28

Adding the j-th new observation

cdf[nv[j]] = h + j

h =
nv{j} − q[i−1]

q[i] − q[i−1]
cdf[q[i]]

h

+1

nv[j] <

cdf[q[i]]

x

j

Merging the jth observed value nv[j] before quantile q[i]

j −1

j −1

q[i]q[i−1]

cdf(q[i−1])

cdf(x) = F(x) * T

Selecting Computing quantiles IQ-agant

Incremental Python and/or R quantile agent

Exercise

1. Re-implement the IQ-agent in Python and in R,

2. Design a suitable Monte Carlo simulation experience for
verifying the re-implementations.

3. Compare the run times of your IQ-agent in Python and in R
with the NR3C++ implementation.

25 / 28

Selecting Computing quantiles IQ-agant

Empirical CDF agent

Exercise
Notice that the state of the incremental quantile agent represents
in fact the empirical cumulated distribution function (cdf)
constructed on the fly from an incoming random data stream.

1. Add save and restore methods to the iqagent (C++/nr3
and R) that allow to save and restore the state of the agent
in/from a file.

2. Add a cdf method to the iqagent in C++/nr3 and R
rendering the propability P(X 6 q) of a given quantile(q).

3. Add an inverse cdf method named cdfinv to the iqagent in
C++/nr3 and R rendering the quantile xu% gathering u% of
the observation data.

26 / 28

Selecting Computing quantiles IQ-agant

Use the iqagent for simulation problems

Exercise
Notice that previous incremental cdf agent may readily be used for
Monte carlo simulation purposes :

1. Save an empirical cdf from a sample of 10000 random normal
numbers of mean 50 and standard deviation 20

2. Compare the previous cdf estimation with the theoretical
random variable N (50, 20).

27 / 28

Selecting Computing quantiles IQ-agant

Use the iqagent for simlation problems – continue

Exercise
The size of the data buffer has a certain influence on the accuracy
of the iqagent estimations.

1. Estimate quantiles with the iqagent from a continuous stream
of values generated from a known probability distribution, by
varying the size of the data buffer D.

2. What is the lowest size for D such that the accuracy stays
within the 90% confidence interval of the χ2 test of difference
between the estimated and the real distribution.

28 / 28

