Content	of	the	lecture
0			

form variables

Gauss 000 0000 Content of the lecture

Uniform variables 000 00

verse Transform

Gauss variable 000 00000 00000000000

Content of Lecture 3

Computational Statistics

Lecture 3: Continuous Random Variables

Raymond Bisdorff

University of Luxembourg

8 novembre 2019

1. Simulating uniform random variables Probability distributions in R-core Simulating a continuous uniform distribution The spectral test for RNGs

 Simulating non uniform random variables by inverse transform Simulating a discrete probability distribution The continuous inverse transform Standard exponential law based generators

3. The Gaussian random variable

The "normal" probability distribution Important properties of the Gaussian Simulating Gaussian random variables

			1 / 34				2 / 34
ontent of the lecture	Uniform variables	Inverse Transform	Gauss variable	Content of the lecture	Uniform variables	Inverse Transform	Gauss variable
	000	000	000	0	000	000	000
	00	00	00000		00	00	000
	00	0	0000000000		00	0	0000000000

3/34

Probability distributions in R-core

Distribution	R-name	Parameters	Default Values
Beta	beta	shape1,shape2	
Binomial	binom	size,prob	
Cauchy	cauchy	location, scale	0,1
Chi-square	chisq	df	
Exponential	exp	1/mean	
F	f	df1, df2	
Gamma	gamma	shape, 1/scale	NA, 1
Geometric	geom	prob	
Hypergeometric	hyper	m,n,k	
Log-normal	lnorm	mean,sd	0,1
Logistics	logis	location,scale	0,1
Gaussian	normal	mean, sd	0,1
Poisson	pois	lambda	
Student	t	df	
Uniform	unif	min,max	0,1
Weibull	weibull	shape	

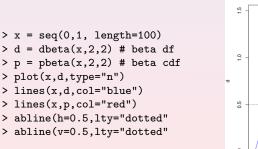
Each R-name may be prefixed with d, p, q, and r, to deliver the corresponding density

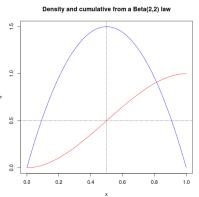
(*df*), cumulative probability distribution (*cdf*), the quantiles fct (*cdf*⁻¹), and a

random instance generator, like runif for instance.

Graphing probability distributions

Checking, for instance, the shape of the *density function* (df) and/or of the *cumulative distribution function* (cdf) of a beta(2,2) law may be done with the following R commands :





Uniform variables

Uniform variables ...

Graphing probability distributions

Exercise (Centrally peaked distributions)

000

Construct a graph in R on the real interval [-5, 5] which superposes the standard normal distribution $\mathcal{N}(0,1)$, the student t-distributions t(6,0,1) and t(4,0,1), the Cauchy distribution C(0,1) and the logistic distribution L(0,1).

Exercise (Distributions on the positive half-line)

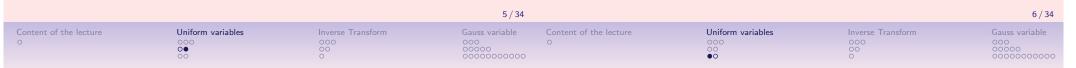
Construct a graph in R on the half-line [0, 10] which superposes the exponential distribution Exp(0.5), the Fischer F-distribution F(10,4), the Lognormal distribution $\mathcal{LN}(1,1)$, the Gamma distribution $\Gamma(3, 1)$, and the Chi-Square Distribution $\chi^2(df = 5)$.

Generating uniform simulation data with R

The basic uniform generator in R is **runif** with required number *nSim* of values to be generated. The range of a uniform random variable $X \sim \mathcal{U}(2,5)$ may be indicated with the min (default = 0) and max (default = 1) parameters like this :

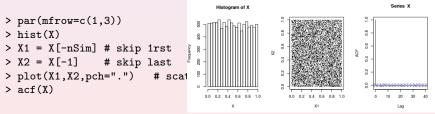
 $> nSim = 10^{4}$ > set.seed(1) # initializing the generator > X = runif(nSim, min=2, max=5)

The commands will produce a vector X containing 10^4 values generated from a uniform law of range 2 to 5.



Checking the quality of the uniform generator

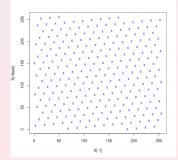
Checking the quality of a uniform random sequence X may be done with a histogram, a plot of the pair (X[i], X[i+1]), and the estimated autocorrelation function acf(X). Try the following R commands :



The spectral test for RNGs

An especially important way to check the quality of a uniform random number generator is given by the spectral test. If we have a sequence $\langle U_n \rangle$ of period m, the basic idea is to analyse the positions of the set of all m points $\{(U_n, U_{n+1}, ..., U_{n+t-1})\}$ for 0 > n > m in t-dimensional space. For instance, consider the following t = 2 and t = 3 tests for a linear congruational generator :

> nSim = 256> X=rep(0,nSim) > for (i in 2:nSsim){ > X[i] = (137*X[i-1]+187)%%256 } > plot(X[-1],X[-nSim],col="blue",\ type="p",pch="x",lwd=2)



Content of the lecture	Uniform variables	Inverse Transform	Gauss variable	Content of the lecture	Uniform variables	Inverse Transform	Gauss variable
0	000 00 0•	000 00 0	000 00000 00000000000	0	000 00 00	• 00 00 0	000 00000 0000000000

The spectral test for RNGs – continue

With the same LCGRNG we obtain in a three-dimensional spectral test the following result :

```
> nSim = 256
> X=rep(0,nSim)
> for (i in 2:nSim){
> X[i] = (137*X[i-1]+187)%%256 }
> X1 = X[3:256]
> X2 = X[2:255]
> X3 = X[1:254]
> library("lattice")
```

> cloud(X3 ~ X1 + X2,type="p")

Exercise

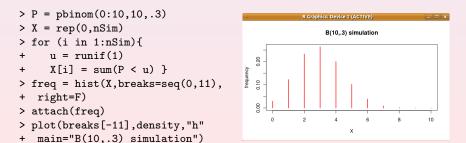
Compare with the results of the spectral test for the default Mersenne Twister generator.

			9 / 34				10 / 34
Content of the lecture O	Uniform variables 000 00 00	Inverse Transform ○●○ ○○	Gauss variable 000 00000 00000000000000000000000000	Content of the lecture O	Uniform variables 000 00 00	Inverse Transform ○○● ○	Gauss variable 000 000000 0000000000

Discrete inverse transform

To generate $X \sim \mathcal{P}(\theta)$ where $\mathcal{P}(\theta)$ is a discrete random variable defined on integer values $0, 1, 2, ..., \theta$, we store once for all the discrete cumulated probabilities : $p_0 = P(X \leq 0)$, ..., $p_{\theta} = P(X \leq \theta)$. With $U \sim \mathcal{U}(0, 1)$, one may take : X = k if $p_{k-1} < U < p_k$ for $k = 1, ..., \theta$.

Here the R code to generate a variable $X \sim \mathcal{B}(10, 0.3)$:



Discrete empirical random laws

2. Simulating non uniform random variables by inverse transform

Simulating a discrete probability distribution

Standard exponential law based generators

The continuous inverse transform

Important properties of the Gaussian

Exercise

You are requested to draw a sample of 1000 random integers in the range [0; 9] along the following empirical probability distribution :

0	1	2	3	4
0.0478	0.3349	0.2392	0.1435	0.0957
5	6	7	8	9
0.0670	0.0478	0.0096	0.0096	0.048

- 1. Write a Python program for generating this sample and store the resulting random sequence in a csv file,
- 2. Generate this sample with R,
- 3. Compare both sample distributions with the empirical one.

variables	Inverse Transform	Gauss variable	Content of the lecture	Uniform variables	Inverse Transform	Gauss variab
	000 •0 0	000 00000 0000000000	0	000 00 00	000 0● 0	000 00000 00000000

The continuous inverse transform

If random variable X has density function f_X and cumulative density function (cdf) F_X , we have the relation :

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

If we set $U := F_X \sim U(0, 1)$ and assume that the cdf F_X has an **analytical inverse** F_X^{-1} then :

$$P(U \le u) = P(F_X \le F_X(x))$$

= $P[F_X^{-1}(F_X) \le F_X^{-1}(F_X(x))]$
= $P(X \le x)$

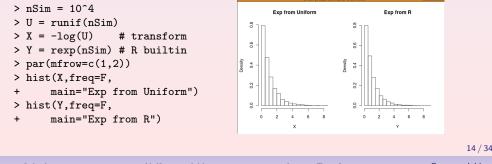
Now, if
$$F_X^{-1}(u) := \inf\{ x \mid F_X(x) \ge u \}$$
 then $F_X^{-1}(U) \sim X$.

The inverse transform of the standard exponential probability law

Suppose $X \sim \lambda e^{-\lambda x}$ with $\lambda = 1$. Then $F_X = 1 - e^{-x}$. Solving for x in $u = 1 - e^{-x}$ gives $x = -\log(1 - u)$. Therefore, if $U \sim \mathcal{U}(0, 1)$, then $1 - U \sim U$ and

$$X = -\log U \sim e^{-x}$$

Try the following R commands :



Uniform variables	Inverse Transform	Gauss variable	Content of the lecture	Uniform variables	Inverse Transform	Gauss variable
000	000	000	0	000	000	000
00	00	00000		00	00	00000
00	•	0000000000		00	0	0000000000

Standard exponential law based generators

Suppose we have a generator for the standard exponential law based on uniform random number generator.

If variables X_i 's are independent e^{-x} distributed variables, then the Chi-square, Gamma and Beta distributions can be simulated as follows :

$$Y = 2\sum_{i=1}^{n} X_{i} \sim \chi^{2}(df = 2n)$$
$$Y = \beta \sum_{i=1}^{a} X_{i} \sim \mathcal{G}(a, \beta)$$
$$Y = \frac{\sum_{i=1}^{a} X_{i}}{\sum_{i=1}^{a+b} X_{i}} \sim \mathcal{B}(a, b)$$

- 1. Simulating uniform random variables Probability distributions in R-core Simulating a continuous uniform distributio The spectral test for RNGs
- Simulating non uniform random variables by inverse transform Simulating a discrete probability distribution The continuous inverse transform

3. The Gaussian random variable

The "normal" probability distribution Important properties of the Gaussian Simulating Gaussian random variables

Uniform variables

Gauss variable

000

The normal probability distribution

- A very special role in simulations is played by the "*normal*" or "*normally*" distributed random variables.
- A random variable $X \in \mathbb{R}$ is "normally" distributed, or Gaussian, with mean $E(X) = \mu$ and standrad deviation $\sqrt{V(X)} = \sigma$:

 $X \sim \mathcal{N}(\mu, \sigma),$

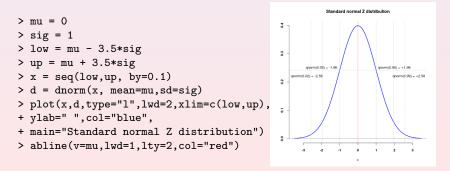
when

$$P(X \leq x) = rac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-rac{1}{2}\left[rac{(t-\mu)}{\sigma}
ight]^{2}} dt$$

• A standard Gaussian variable is a Gaussian variable, denoted Z, with zero mean ($\mu = 0$) and unit standard deviation ($\sigma = 1$).

 $\begin{array}{l} \mu\pm1.96\sigma \mbox{ or }z\pm1.96 \mbox{ gathers }95\% \mbox{ of the observations} \\ \mu\pm2.58\sigma \mbox{ or }z\pm2.58 \mbox{ gathers }99\% \mbox{ of the observations} \\ \mu\pm3.29\sigma \mbox{ or }z\pm3.29 \mbox{ gathers }99.9\% \mbox{ of the observations} \end{array}$

 $\mu \pm 1\sigma$ or $z \pm 1$ gathers 68.3% of the observations $\mu \pm 2\sigma$ or $z \pm 2$ gathers 95.5% of the observations $\mu \pm 3\sigma$ or $z \pm 3$ gathers 99.7% of the observations



		17 / 34				
Uniform 000 00 00	variables Inverse Trans 000 00 00	form Gauss variable	Content of the lecture O	Uniform variables 000 00 00	Inverse Transform 000 00 0	Gauss variable ○○○ ○●○○○ ○○○○○○○○○○○○

Important properties I

- 1. If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2)$ are two Gaussian variables, then $X_1 + X_2 \sim \mathcal{N}(\mu = \mu_1 + \mu_2, \sigma = \sqrt{\sigma_1^2 + \sigma_2^2})$.
- 2. If Z_1 and Z_2 are two independent standard Gaussian variables, then

$$Z = \frac{Z_1 + Z_2}{\sqrt{2}} \quad \sim \quad \mathcal{N}(0, 1).$$

3. If $Z_1, ..., Z_n$ are *n* mutually independent standard Gaussian variables, then

$$Z = rac{Z_1 + ... + Z_n}{\sqrt{n}} ~~ \sim ~~ \mathcal{N}(0,1).$$

Important properties II

1. If
$$X_i$$
, for $i = 1...n$, are i.i.d. Gaussian $\mathcal{N}(\mu, \sigma)$ variables then

$$egin{aligned} X_1+...+X_n &\sim \mathcal{N}(n\mu,\sqrt{n}\sigma),\ &rac{(X_1+...+X_n)}{n} &\sim \mathcal{N}(\mu,\sigma/\sqrt{n}),\ &rac{(X_i-\mu)}{\sigma} &\sim \mathcal{N}(0,1),\ &rac{(\overline{X_i}-\mu)}{\sigma}\sqrt{n} &\sim \mathcal{N}(0,1). \end{aligned}$$

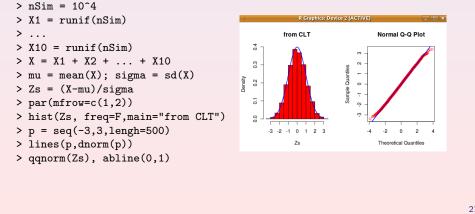
2. If $Z_1, ..., Z_n$ are *n* mutually independent standard Gaussian variables, then

$$X = \sum_{i=1}^n Z_i^2 \sim \chi^2(df = n).$$

			Content of the lecture	Uniform variables	Inverse Transform	Gauss variable
000	000	000	0	000	000	000
00	00	00000		00	00	00000
00	0	0000000000		00	0	00000000000

The Central Limit Theorem – CLT

The sum of *n* independently distributed random variables X_1 , X_2 , ..., X_n , when *n* gets large, tends toward a Gaussian distribution $\mathcal{N}(\mu, \sigma)$ where $\mu = E(\sum_{i=1}^n X_i)$ and $\sigma = \sqrt{V(\sum_{i=1}^n X_i)}$.



Exercise

We have seen previously that twice the sum of n independent standard exponential variables is distributed like a chi-square variable with 2n degrees of freedom.

Similarly, we have seen that the sum of squares of n independent standard Gaussian variables is again distributed like a chi-square variable with n degrees of freedom.

Questions :

- 1. What is hence the formal relationship between standard exponential and standard Gaussian variables?
- 2. Illustrate graphically your previous result with a suitable Monte Carlo simulation experiment.

"Normal" does not mean "normally" observed !

- The name "normal distribution" was introduced in 1893 by Karl Pearson; the distribution was originally discovered in 1721 by A. De Moivre, and later rediscovered and thoroughly independently studied by Laplace (1749–1827) and Gauss (1777–1855).
- The very importance of the Gaussian comes indeed essentially from its mathematical properties which position this distribution via the CLT and the Large Number Laws in the center of mathematical statistics and measure theory.
- Examples of nearly normal random variables are, however, very rarely observed in Nature. Even in the presence of the CLT, extensive sampling from natural data very often reveal systematic differences with a Gaussian distribution; usually due to showing much heavier distribution tails.

Gauss variable	Content of the lecture	Uniform variables	Inverse Transform	Gauss variable
000	0	000	000	000
00000		00	00	00000
00000000000		00	0	0000000000

A didactical Gaussian random number generator

The inverse of a Gaussian *cdf* has, contrary to the exponential *cdf*, no closed analytic form. One simple way, however to achieve the simulation of the standard Gaussian variable $Z \sim \mathcal{N}(0, 1)$ uses the Box-Muller algorithm.

It is based on the observation that, if U_1 and U_2 are two independent and identically $\mathcal{U}(0,1)$ distributed uniform random variables, then :

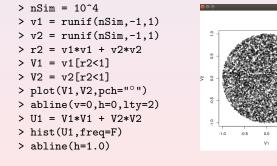
$$Z_1 = R \cos(\Theta) = \sqrt{-2 \log(U_1)} \cos(2\pi U_2),$$

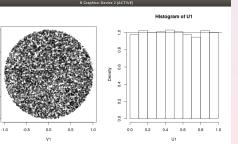
$$Z_2 = R \sin(\Theta) = \sqrt{-2 \log(U_1)} \sin(2\pi U_2).$$

where $R = \sqrt{Z_1^2 + Z_2^2}$ and $\Theta = 2\pi U_2$ are resp. the length of a vector and its angle with respect to the *x*-axis in a Cartesian system whith standard Gaussian coordinates (Z_1, Z_2) .

The Box-Muller algorithm I

i) If $V_1 \sim \mathcal{U}(-1, 1)$ and $V_2 \sim \mathcal{U}(-1, 1)$ with $0 < U_1 = (V_1^2 + V_2^2) < 1$, the pairs (V_1, V_2) give uniformly random positions within a unit circle and U_1 is $\mathcal{U}(0, 1)$ distributed.





The Box-Muller algorithm II

ii) By noticing that $R^2=(Z_1^2+Z_2^2)$ takes value in $[0,\infty]$ and :

$$(Z_1^2+Z_2^2) \sim \chi^2(R^2, df=2) \sim 2e^{(-R^2)},$$

we may simulate R by the exponential inverse transform :

$$R = \sqrt{-2\log(U_1)},$$

 Content of the lecture
 Uniform variables
 Inverse Transform
 Gauss variable

 0
 000
 000
 000
 000

 00
 000
 000
 000
 000

 00
 000
 000
 000
 000

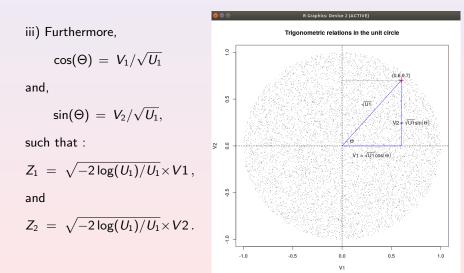
 00
 000
 000
 000
 000

 00
 000
 000
 000
 000

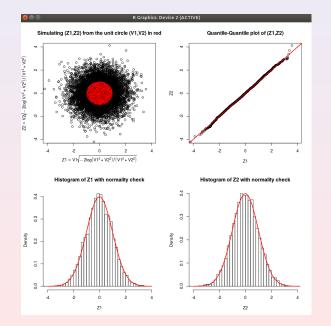
 00
 000
 000
 000
 000

 00
 000
 000
 000
 000

The Box-Muller algorithm III



Checking the Box-Muller algorithm



Content of the lecture o

Uniform variables 000 00 Inverse 000 00 Gauss variable 000 00000 00000000000

Content of the lectur O Uniform variables 000 00

Transform

Gauss variable

30 / 34

Multivariate Gaussian random variables

Exercise (Box-Muller implementation)

Questions :

- 1. Implement a Gaussian random number generator in Python and in R based on the Box-Muller algorithm.
- 2. Illustrate graphically in R the distribution of your generator when simulating a standard Gaussian variable and a Gaussian variable with mean=2 and stddev=2.
- 3. Compare your results with the in-built generators both in R and in Python.

A multivariate random variable of dimension m generates a vector **x** of $m \ge 1$ random numbers. We are interested here in the special case of multivariate Gaussian variables being defined by the multideminsional Gaussian density function :

$$\mathcal{N}(\mathbf{x}|\mu, \mathbf{\Sigma}) = \frac{1}{(2\pi)^{m/2} \det(\mathbf{\Sigma})^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}-\mu) \cdot \mathbf{\Sigma}^{-1} \cdot (\mathbf{x}-\mu)\right]$$

where the parameter μ is a vector containing the multivariate mean, and the parameter Σ , a symmetrical, positive-definite matrix, is the distribution's covariance.

In case m = 1 we recover the unidimensional formula seen before.

Simulating a multivariate Gaussian variable

In case of m = 1, we may easily generate a random number x from a $\mathcal{N}(\mu, \sigma)$ law by drawing a standard Gaussian number z from $\mathcal{N}(0, 1)$ and applying the transform :

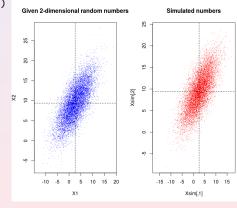
 $x = \sigma \cdot z + \mu$

In the general case m > 1, we first draw a random vector **y** of dimension m from independent standard $\mathcal{N}(0,1)$ generators. If \mathbf{LL}^t is the Choleski decomposition of the given covaraince Σ , where **L** is the "square root" of Σ (the multivariate standard deviation $\sqrt{\Sigma}$), we obtain a random vector **x** from the $\mathcal{N}(\mu, \Sigma)$ law in a similar way :

$$\mathbf{x} = \mathbf{L}\mathbf{y} + \mu$$

Simulating a multivariate Gaussian in R

par(mfrow=c(1,2)) $nSim = 10^4$ X1 = rnorm(nSim, 2.5, 4)X2 = 0.75 * X1 + 1.5 * rnorm(nSim, 5, 2)X = cbind(X1, X2)plot(X,pch=".",col="blue") abline(v=mean(X1),h=mean(X2)) L = chol(cov(X))X1 X2 # X1 4.054996 3.017995 # X2 0.000000 2.999869 Xsim = cbind(rep(0,nSim), rep(0,nSim)) for (s in 1:nSim) { ts = t(rnorm(2)) % * % L+ t(c(mean(X1)),mean(X2)))Xsim[s,1] = ts[1]Xsim[s,2] = ts[2]plot(Xsim,pch=".",col="red") abline(v=mean(Xsim[,1]),h=mean(Xsim[,2]))



Content	of	the	lecture	
0				

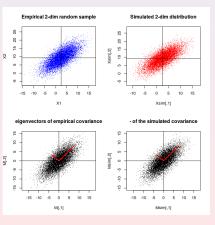
n variables

m Gauss variable

Content of the lectu 0 Uniform variables 000 00 Inverse Transform 000 00 Gauss variable

Simulating a multivariate Gaussian in R

M=cbind(X1-mean(X1),z-mean(X2)) plot(M,ylim=c(-15,15),xlim=c(-17,17),pch=".") abline(v=0,h=0) eigCoV=eigen(cov(X)) B=diag(2*sqrt(eigCoV\$values)) %*% t(eigCoV\$vectors) ax1=rbind(B[1,],c(0,0)) ax2=rbind(B[2,],c(0,0)) lines(ax1,col="red",lwd=3) lines(ax2,col="red",lwd=3) Msim=cbind(Xsim[,1]-mean(Xsim[,1]), Xsim[,2]-mean(Xsim[,2])) plot(Msim,ylim=c(-15,15), xlim=c(-17,17),pch=".") abline(v=0,h=0) eigCoVs = eigen(cov(Xsim)) Bx = diag(2*sqrt(eigCoVs\$values)) %*%t(eigCoVs\$vectors) ax1 = rbind(Bx[1,],c(0,0))ax2 = rbind(Bx[2,],c(0,0))lines(ax1,col="red",lwd=3) lines(ax2,col="red",lwd=3)



Exercise

The above simulation procedure, using the empirical mean and covariance, does work well in principle only for multivariate Gaussian variables. Indeed all linear combinations of Gaussians are themselves again normally distributed and completely defined by their mean and covariance structure.

But the procedure does not usually work well for non Gaussian multivariate random variables.

Question :

Try the above simulation procedure with different other types of continuous random variables (uniform, triangular, exponential, Cauchy, Beta, etc) in order to find an appropriate example that illustrates well the potential failure of this simulation procedure.