MICS-3: Computational Statistics

Lesson 1: Random number generators for simulations

Raymond Bisdorff

University of Luxembourg

3 octobre 2019

1. Generating random numbers

Numbers "chosen at random"
Computer generated random numbers
Multiple recursive generators over \mathbb{F}_{2}
2. Home brewed generators

Recommendations and traps to watch for
Combining generators
Testing randomness
3. Selected Problems

The random module in Python
Generating random numbers
Generating non uniform random numbers

Numbers "chosen at random"

Numbers "chosen at random" are mostly required in order to :
a) Simulate natural phenomena or operational systems in a realistic manner;
b) Sample potential cases in order to uncover typical behaviour when it is impractical to observe all cases ;
c) Test effectiveness and performance of algorithms and software components ;
d) Cipher messages for secure, trustful and reliable communications;
e) Hash the access to data structures and storage areas.

Early computing techniques

In 1995 George Marsaglia prepared a CDROM with 650 Megabytes of "white and black" noise, generated by combining the output of a noise-diode circuit with deterministically scrambled rap music.

\$ hexdump bits 01

0000000 1d3f 7cc4 1330 16b2 fd2d 1c01 $79635 f 10$ 0000010 f813 c907 27cd f625 af78 25e7 17c0 6a0s 0000020 593c 1ce4 293a 86af 1109 cee3 f39b $429 b$ 0000030 2b62 d0fc 24820 0b1 a3d8 d677 3e9f 0931 0000040 fe0c $403 d 979946404951$ 3f6e 46974 ed 0000060 a063 b7af 2 ba7 28 b 73563544 f 5 ced 9 a 9 0000070 a 41 7a14 c2be c3d8 a92c 0 f20 2183471 0000080 d 67 c 49 db e59e aae1 5fc2 fdf9 ba18 f877 0000090 2ffe $1601116562 \mathrm{c} 19 f 16$ d24e 3104 dedo 00000a0 24ca da7a 7b39 1561 d5d9 34b5 2b3f dd13 $00000 \mathrm{b0}$ 6adb 058 d 059 a c0c9 9c10 50577017 84a8 00000c0 6257 f049 0b0e c912 cb59 40871 a34 a2b 00000d0 bbd0 bcfa 0135 c0d5 e74f bdc9 a07a bea …

See http://stat.fsu.edu/pub/diehard/

John von Neumann suggests in 1949 to recursively extract the middle digits from the square of a random number
For instance, to generate 10 -digit numbers and the previous value was 5772156649 , we square it to get :

33317792380594909201

the next number is hence 7923805949
The sequence is evidently not random, but it appears to be so Depending on the starting point it may, however, quickly end in a short cycle of repeating the same sequence of numbers.

Exercise
Generate in Python a sequence of random 4 middle digits from squared numbers of length 8, starting with the seed $=2608$.

By far the most popular random number generator in use until recently, is based on a linear congruential recursion $\left\langle X_{n}\right\rangle$ (D. H. Lehmer 1949) :

$$
X_{n+1}=\left(a X_{n}+c\right) \bmod m, \quad n \geq 0
$$

with four magic numbers :

m,	the modulus;	$0<m$.
a,	the multiplier;	$0 \leq a<m$.
c,	the increment;	$0 \leq c<m$.
X_{0},	the starting value;	$0 \leq X_{0}<m$.

Exercise

i) Generate $\left\langle X_{n}\right\rangle$ with $m=10$ and $X_{0}=a=c=7$.
ii) Generate $\left\langle X_{n}\right\rangle$ with $m=256, X_{0}=0, a=137$, and $c=187$. Scatterplot X_{n} versus X_{n-1} for $n=2, \ldots, 256$.

Maximal period of the MLCG

With increment $c=0$, the maximal period of the multiplicative linear congruential generator (MLCG) is $m-1$ when m is prime and $a>1$ is a primitive element modulo m.
In this case, a is a generator of the cyclic group $\left(\mathbb{Z}_{m}^{+}, \cdot\right)$, where \mathbb{Z}_{m}^{+} represents $\mathbb{Z}-\{0\}$ and \cdot represents arithmetic multiplication modulo m.
Indeed, consider the random sequence output by an LCG in this case :

$$
\left\langle X_{m}\right\rangle=\left[\frac{x_{0}}{m}, \frac{a^{1} x_{0}}{m}, \frac{a^{2} x_{0}}{m}, \ldots, \frac{a^{m-1} x_{0}}{m}, \frac{a^{m} x_{0}}{m}\right]
$$

Since $a^{i} \neq a^{j}$ for all $1 \leqslant i \neq j \leqslant m-1$, the first $m-1$ elements of $\left\langle X_{m}\right\rangle$ are all different, and $\left(a^{m} x_{0}\right) / m=\left(a^{0} x_{0}\right) / m=x_{0} / m$. The sequence starts repeating itself from that point on.

LCG with maximum period length m

Theorem (Greenberger 1961, Hull and Dobell 1962)

The linear congruential sequence defined by m, a, c, and X_{0} has period length m if and only if:
(i) c is relatively prime to m;
(ii) $a-1$ is a multiple of p, for every prime p dividing m;
(iii) $a-1$ is a multiple of 4 , if m is a multiple of 4 .

Comment

LCGs are obsolete today. And better generators based on register shifts and xor operations, like the Mersenne Twister - based on a matrix linear recurrence over a finite binary field \mathbb{F}_{2} - which produces 53 -bit precision floats and has a period of $2^{19937}-1$, have replaced them in most softwares.

Multiple recursive generators

Constructing RNGs with longer periods than the linear congruential generators is possible when using a recursion of higher order. Let $k \geqslant 1$ and m be prime. A multiple recursive generator (MRG) is an RNG with $S=\mathbb{Z}_{m}^{k}$, and state $\mathbf{y}_{i}=\left(x_{i}, \ldots, x_{i-k+1}\right)$ at step i evolves through the recurrence :

$$
x_{i}=\tau\left(\mathbf{y}_{i-1}\right)=\left(a_{1} x_{i-1}+\ldots+a_{k} x_{i-k}\right) \bmod m
$$

where $a_{i} \in \mathbb{Z}$ for $j=1, \ldots, k$ with $a \neq 0$ and the output $\xi\left(y_{i}\right)$ is given by x_{i} / m.
The potential period of an MRG is $m^{k}-1$, obtained when the characteristic polynomial $P(z)$ of the recurrence is primitive over \mathbb{F}_{m}. That is, the smallest integer r for which $z^{r} \equiv 1 \bmod P(z)$ is $m^{k}-1$.
Examples (Simple MRGs)

1. The multiplicative congruential generator (MRG) where $k=1$.
2. The additive lagged-Fibonacci generator, where the transition function is given by : $x_{i}=\left(x_{i-r}+x_{i-k}\right) \bmod m$. Proposed magic numbers are $r=24, k=55$ and $m=2^{24}$ (Mitchell\&Moore 1958).

Generic RNG structure

Witout loss of generality, all Random Number Generators (RNGs) can be described as structure of the form $\left(S, T, \tau, \xi, x_{0}\right)$, where

$$
\begin{aligned}
S & =\text { state space } \\
T & =\text { output space } \\
\tau: S \rightarrow S & =\text { transition function } \\
\xi: S \rightarrow T & =\text { output function } \\
x_{0} & =\text { seed }
\end{aligned}
$$

The "random" sequence $\left[u_{0}, u_{1}, \ldots\right]$ generated in T is defined as $u_{i}=\xi\left(x_{i}\right)$, for $i \geqslant 0$, where $x_{i}=\tau\left(x_{i-1}\right)$ for $i>0$.
Example (Linear Congruential Generator)
For instance, in the case of the previous LCG, $S=\mathbb{Z}_{m}, T=[0,1)$, $\tau(x)=(a x+c)(\bmod m)$, and $\xi(x)=x / m$. The magic numbers : a (the multiplier) and c (the increment) are in $\mathbb{Z}-\{0\}$, whereas m (the modulus) is in $\mathbb{N}-\{0\}$.

Multiple recurrences modulo 2

Because of the binary nature of all data and computations, it is opportune to use a binary state space $\{0,1\}^{k}$ and implement transition functions on \mathbb{F}_{2}, where multiplication and division are implemented with register shifts (\ll, \gg) and addition modulo 2 is implemented with the xor operator.
Example (Tausworthe generator)
The linear feedback shift register (LFSR), proposed by Tausworthe (1965), is a MRG with $S=\mathbb{Z}_{2}^{k}$ and transition function

$$
x_{i}=\left(a_{1} x_{i-1}+\ldots+a_{k} x_{i-k}\right) \quad \bmod 2
$$

where $a_{i} \in\{0,1\}$ for $i=1, \ldots, k$, and the output value $u_{i}=\sum_{j=1}^{L}\left[\left(x_{i \nu+j-1}\right) 2^{-j}\right.$ with ν (the step size) and L (the word length) being positive integers.
The Tausworthe generator has a maximal period $\rho=2^{k}-1$ if the transition function has this period ρ and $\operatorname{gcd}(\rho, \nu=1)$.

Generalized feedback shift register (GFSR)

The Tausworthe generator has been generalized by replacing the "bits" x_{i} by vectors \mathbf{x}_{i} of L bits. The state \mathbf{y}_{i} is then defined as $k L$ bits vectors $\left(\mathbf{x}_{i}, \ldots, \mathbf{x}_{i-k+1}\right)$
The transition function is replaced by a recurrence of the form :

$$
\mathbf{x}_{i}=\left(a_{1} \mathbf{x}_{i-1}+\ldots+a_{k} \mathbf{x}_{i-k}\right) \bmod 2
$$

where $\mathbf{x}_{i}=\left(x_{i, 1}, \ldots, x_{i, L}\right)$ and the output value is:

$$
u_{i}=\sum_{j=1}^{L}\left(x_{i, j}\right) \cdot 2^{-j}
$$

The maximal period of this generator is still $2^{k}-1$, while the period could potentially be of the size of the state space $\left(|S|-1=2^{k L}-1\right)$.

Twisted generalized feedback shift register (TGFSR)

A way to further increase the potentially maximal period of a GFSR goes by generalizing the recurrence defining the transition function. To illustrate this construction it is useful to reformulate the GFSR transition function in matrix notation : $\mathbf{x}_{i}=A \mathbf{x}_{i-1}$, where \mathbf{x}_{i} are vectors of $k L$ bits and A is a $k L \times k L$ matrix of the form

$$
A=\left(\begin{array}{ccccc}
0 & I_{L} & 0 & \ldots & 0 \\
0 & 0 & I_{L} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & I_{L} \\
a_{k} I_{L} & a_{k-1} I_{L} & a_{k-2} I_{L} & \ldots & a_{1} I_{L}
\end{array}\right)
$$

where I_{L} is the $L \times L$ identity matrix.
The TGFSR replaces the I_{L} matrix in the last row by more general matrices. Furthermore the output value u_{i} of the GFSR is tempered with a series of left and right register shifts.

Traps to watch for

Definition (From Numerical Recipes p.340)

A home-made generator of random numbers should ideally verify the following methodological principles:

1. The procedure - deterministic or not - that produces a random sequence of numbers should be different from, and in all measurable respects - statistically uncorrelated with, the procedure that uses its output;
2. Any two different random generating procedures ought to produce statistically the same results if used similarly in a scientific investigation or application;
3. A same sequence of random numbers may be regenerated Ad libitum for testing and debugging purposes.

Many out-of-date and inferior methods for generating random numbers remain in general use. Therefore :

- Never use a generator principally based on a linear congruential generator (LCG) or a multiplicative linear congruential generator (MLCG).
- Never use a generator with a period less than $\sim 2^{64} \approx 2 \times 10^{19}$, or any generator whose period is unknown to you.
- Note that in your scientific reports, when using random numbers, you should always mention the generator and its period.
- Never use a generator that warns against using its low-order bits. This indicates an obsolete algorithm (usually a LCG).
- Never use the built-in generators in the C and C++ language, especially rand and srand. They have no standard implementation and are often of bad quality.

Content of the lecture	$\begin{aligned} & \text { RNGs } \\ & \circ \\ & 000 \\ & 0000 \\ & 000000 \end{aligned}$	Home brewed generators \circ $\circ 0$ $\bullet \circ$ 00000	Selected Problems \bigcirc 00 -0	Bibliography
		Best practice		

Recommendations for constructing a random number generator :

- An acceptable random generator must combine at least two ideally unrelated methods.
- The methods combined should evolve independently and share no state.
- The combination should be by simple operations that do not produce results less random than their operands.
Reference : Numerical Recipes: The Art of Scientific Computing (3rd Ed.), W H Press, S A Teukolsky, W T Vetterling \& B P Flannery, Cambridge University Press 2007, Chapter 7, Random Numbers, pp. 340-418.

Combining bitwise operators

64-bit Xor (\oplus) and bit shifts (\ll, \gg)

state :	$x($ unsigned 64-bit $)$
initialize :	$x \neq 0$
update :	$x \leftarrow x \oplus\left(x \gg a_{1}\right)$
	$x \leftarrow x \oplus\left(x \ll a_{2}\right)$
	$x \leftarrow x \oplus\left(x \gg a_{3}\right)$
can use as random :	$x($ all bits $)$
period :	$2^{64}-1=1.8446744073709551615 \times 10^{19}$

Triples of magic numbers $\left(a_{1}, a_{2}, a_{3}\right)$, that deliver a full period are a.o. $(21,35,4),(20,41,5)$, and (17, 31, 8). The MT19937 generator uses, for instance, this approach as tempering functions, with a quadruple of magic numbers $(11,7,15,18)$.

Example of simple and fast combined generator

Combining Xor, shifts and an LCG

State :	x (unsigned 64-bit)
initialize :	$x \neq 0$ (default: 4101842887655102017)
update :	$x \leftarrow x \oplus(x \gg 21)$
	$x \leftarrow x \oplus(x \ll 35)$
	$x \leftarrow x \oplus(x \gg 4)$
	$x \leftarrow 26858216577363387117 \cdot x\left(\bmod 2^{64}\right)$
can use as random :	x (all bits)
period :	1.8×10^{19}

Source : Numerical recipes, Ranq1, p. 351.

Testing equidistribution

Let $\left\langle U_{n}\right\rangle=\left[u_{0}, u_{1}, u_{2}, \ldots\right]$ be a sequence of random numbers from the float interval $[0.0 ; 1.0)$ apparently generated in a uniformly manner.
To test the quality of the random generator, we consider the auxiliary sequence $\left\langle Y_{n}\right\rangle=\left[y_{0}, y_{1}, y_{2}, \ldots\right]$ defined by the rule $y_{n}=\left\lfloor d \times u_{n}\right\rfloor$, where d is a positive integer - usually 64,100 , or 128 - also called the discrete grain of the generator.
When sequence $\left\langle U_{n}\right\rangle$ is indeed uniformly distributed, we will observe a sequence $\left\langle Y_{n}\right\rangle$ of equidistributed integers between 0 and $d-1$.

$$
\begin{aligned}
& \text { A generator produces a good uniform random sequence }\left\langle U_{n}\right\rangle \text { if, for a large grain } \\
& d \text { and } n \rightarrow \infty \text {, the relative frequency } f(i) \text { of each integer } i \text { from } 0 \text { to } d-1 \text { in } \\
& \left\langle Y_{n}\right\rangle \text { converges (but not suspiciously fast) to } 1 / d \text {. }
\end{aligned}
$$

The quality of a given random generator may now be assessed with a two-tailed Chi-square test of difference between the empirical $f(i)$ distribution and the theoretical uniform $1 / d$ distribution. Below 5% or above 95% differences indicate the likeliness of a suspicious non-randomness in $\left\langle U_{n}\right\rangle$.

Coupon collector's test

- This test relates the frequency test to the previous gap test. We use the auxiliary sequence $\left\langle Y_{n}\right\rangle$ and we observe the lengths of subsequences $y_{j+1}, y_{j+2}, \ldots, y_{j+r}$ that are required to get a complete set of integers - a coupon collector seqment - from 0 to $d-1$.
- With a given maximal subsequence length t, let C_{r} for $r=d, \ldots, t-1$ count the occurences of coupon collector segments of length $d, d+1, \ldots, t-1$, and C_{t} the segments of length $r \geq t$.
- The theoretical count for each coupon collector segment of length r, is

$$
p_{r}=\frac{d!}{d^{r}}\left\{\begin{array}{l}
r-1 \\
d-1
\end{array}\right\}, \quad d \leq r<t-1 ; \quad p_{t}=1-\frac{d!}{d^{r}}\left\{\begin{array}{l}
r \\
d
\end{array}\right\} .
$$

- Similarly, a Chi-square test, comparing the empirical C_{r} with the theoretical p_{r} distribution, may be used in order to assess the likeliness of a suspicious non-randomness of the coupon collector segments.

Up and down runs test

- A sequence $\left\langle U_{n}\right\rangle$ of uniform random numbers may also be tested for "runs up" and "runs down" segments, by examining the length of monotone portions of it. Let $\left[u_{j+0}, u_{j+1}, \ldots, u_{j+r}\right.$] be a subsequence of length r such that either $u_{j+0} \geq u_{j+1} \geq \ldots \geq u_{j+r}$, or, $u_{j+0} \leq u_{j+1} \leq \ldots \leq u_{j+r}$.
- Given a maximal subsequence length t, let C_{r} for $r=1, \ldots, t-1$ count the occurences of separated monotone, either up, or, down runs of length $1,2, \ldots, t-1$, and C_{t} the same runs of length $r \geq t$.
- Assuming that a monotone run of length r occurs with probability $1 / r$! $-1 /(r+1)$!, the theoretical relative count for each length r, gives $p_{r}=1 / r!-1 /(r+1)$! for $r<t$ and $p_{t}=1 / t$!.
- And, again, we may use a Chi-square test, comparing the empirical C_{r} with the theoretical p_{r} distribution, for assessing the likeliness of a suspicious non-randomness of "runs up" or "runs down" segments.

Content of the lecture	RNGs \circ 000000	Home brewed generators \bigcirc ○○○○○	Selected Problems -00 00 00
1. Generating random numbers			
Numbers "chosen at random"			
Computer generated random numbers			
Multiple recursive generators over \mathbb{F}_{2}			
2. Home brewed generators			
Recommendations and traps to watch for			
Combining generators			
Testing randomness			
3. Selected Problems			
The random module in Python			
Generating random numbers			
Generating non uniform random numbers			

Generating random floats with Python3

random is the basic module for generating random numbers in Python. Python3 uses the Mersenne Twister as the core generator
Some code for generating random floats :

```
Python 3.2.3 (default, Oct 19 2012, 19:53:57)
Type "help", "copyright", "credits" or "license"
    for more information.
>>> from random import seed, random, uniform
>> seed(100) # Setting X_0
>>> print('random\lrcornernumber\_on」(0,1):', random())
random number on (0,1): 0.1456692551041303
>>> print('random_number_on_( - 1,1):' ,\
    uniform( (-1,1))
random number on (-1,1): -0.0901459909719573
```

http://docs.python.org/library/random.html

- randrange([start], stop[, step])

Returns a randomly selected element from range (start, stop, step).

```
print ([randrange(-100,100,5) for i in range(10)])
[-85, 90, -25, 95, 60, -10, 85, 5, 65, 5]
```

- randint (a, b)

Returns a random integer N such that $a \leqslant N \leqslant b$.

$$
\begin{aligned}
& \text { print }([\text { randint }(0,5) \text { for i in range }(10)]) \\
& {[2,0,5,5,1,2,1,2,1,1]}
\end{aligned}
$$

- choice (seq)

Returns a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

```
seq =['a','b','c','d','e','f']
print([choice(seq) for i in range(7)])
['e', 'c', 'd', 'd', 'a', 'a', 'c']
```


Shuffling sequences and drawing samples

- shuffle(x[, random])

Shuffles the sequence x in place. The optional argument random is a 0 -argument function returning a random float in $[0.0,1.0)$; by default, this is the function random (). Note that for even rather small len (x), the total number of permutations of x is larger than the period of most random number generators; this implies that most permutations of a long sequence can never be generated.

- sample(population, k)

Returns a k length list of unique elements chosen from the population sequence. Used for random sampling without replacement. Example : sample (xrange (10000000), 60).

Random numbers from a MLCG

Exercise

1. Develop in Python a linear congruential generator for random floats between 0 an 1 of the following type :

$$
\begin{align*}
& x_{0}=\text { seed } \tag{1}\\
& x_{n} \equiv a \cdot x_{n-1}+c(\bmod m) \tag{2}
\end{align*}
$$

where $a, ~ c, m$ and seed may be given at run time.
2. Generate a csv data file containing a sample of 10000 random numbers obtained with your generator when using each one of the following sets of magic numbers :
i. $a=3141592653, c=2718281829, m=2^{35}$, seed $=0$
ii. $a=2^{7}+1, c=1, m=2^{35}$, seed $=0$
iii. $a=23, c=0, m=10^{8}+1$, seed $=47594118$
iv. $a=2^{18}+1, c=1, m=2^{35}$, seed $=314159265$
3. Test the quality of the randomness of the random sequences obtained with the different settings of the magic numbers above.

Discrete empirical random laws

Exercise

You are requested to draw a sample of 1000 random integers in the range $[0 ; 9]$ along the following empirical probability distribution :

0	1	2	3	4
0.0478	0.3349	0.2392	0.1435	0.0957
5	6	7	8	9
0.0670	0.0478	0.0096	0.0096	0.048

1. Write a Python program for generating this sample.
2. Compare the sample distribution with the empirical one.

Q Christiane Lemieux, Monte Carlo and Quasi Monte Carlo Sampling. Springer series in Statistics, New York 2009, Chapter 3 : Pseudorandom Number Generators pp 57-86.
William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes: The Art of Scientific Computing. Third Edition, Cambridge University Press, Cambridge UK 2007, Chapter 7 Random Numbers pp 340-418.

Q Donald E. Knuth, The Art of Computer Programming : Seminumerical Algorithms. Vol. 2, Third Edition, Addison-Wesley, Boston, 1998, Chapter 3 Random Numbers pp 1-193.

圊 M. Matsumoto and T. Nishimura (1998), "Mersenne twister : a 623-dimensionally equidistributed uniform pseudo-random number generator".

ACM Transactions on Modeling and Computer Simulation 8 (1) : 3-30

