
Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

MICS-3: Computational Statistics
Lesson 1: Random number generators for simulations

Raymond Bisdorff

University of Luxembourg

3 octobre 2019

1 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

1. Generating random numbers
Numbers “chosen at random”
Computer generated random numbers
Multiple recursive generators over F2

2. Home brewed generators
Recommendations and traps to watch for
Combining generators
Testing randomness

3. Selected Problems
The random module in Python
Generating random numbers
Generating non uniform random numbers

2 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Numbers “chosen at random”

Numbers “chosen at random” are mostly required in order to :

a) Simulate natural phenomena or operational systems in a
realistic manner ;

b) Sample potential cases in order to uncover typical behaviour
when it is impractical to observe all cases ;

c) Test effectiveness and performance of algorithms and software
components ;

d) Cipher messages for secure, trustful and reliable
communications ;

e) Hash the access to data structures and storage areas.

3 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Manually pick numbers from a random table

You are requested to
draw two independent
samples of 100 ran-
dom integers in the
range [0; 500] from
the table of random
numbers provided in
the resources of the
lecture.

1. How would you proceed ?

2. How many such random numbers may one pick from this table ?

4 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Choose bytes from 650 random Megabytes

In 1995 George Marsaglia

prepared a CDROM with

650 Megabytes of “white

and black” noise, generated

by combining the output of

a noise-diode circuit with

deterministically scrambled

rap music.

See http://stat.fsu.edu/pub/diehard/

5 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Early computing techniques

John von Neumann suggests in 1949 to recursively extract the
middle digits from the square of a random number.
For instance, to generate 10-digit numbers and the previous value
was 5772156649, we square it to get :

33317792380594909201;

the next number is hence 7923805949.

The sequence is evidently not random, but it appears to be so.
Depending on the starting point it may, however, quickly end in a
short cycle of repeating the same sequence of numbers.

Exercise
Generate in Python a sequence of random 4 middle digits from squared numbers of
length 8, starting with the seed = 2608.

6 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

The linear congruential generator LCG
By far the most popular random number generator in use until recently, is
based on a linear congruential recursion 〈Xn〉 (D. H. Lehmer 1949) :

Xn+1 = (aXn + c) mod m, n ≥ 0

with four magic numbers :

m, the modulus ; 0 < m.
a, the multiplier ; 0 ≤ a < m.
c , the increment ; 0 ≤ c < m.

X0, the starting value ; 0 ≤ X0 < m.

Exercise

i) Generate 〈Xn〉 with m = 10 and X0 = a = c = 7.

ii) Generate 〈Xn〉 with m = 256, X0 = 0, a = 137, and c = 187. Scatterplot Xn

versus Xn−1 for n = 2, ..., 256.

7 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Maximal period of the MLCG

With increment c = 0, the maximal period of the multiplicative
linear congruential generator (MLCG) is m − 1 when m is prime
and a > 1 is a primitive element modulo m.
In this case, a is a generator of the cyclic group (Z+

m, ·), where Z+
m

represents Z - {0} and · represents arithmetic multiplication
modulo m.
Indeed, consider the random sequence output by an LCG in this
case :

〈Xm〉 =
[x0

m
,

a1x0
m

,
a2x0

m
, ...,

am−1x0
m

,
amx0

m

]

Since ai 6= aj for all 1 6 i 6= j 6 m − 1, the first m − 1 elements
of 〈Xm〉 are all different, and (amx0)/m = (a0x0)/m = x0/m. The
sequence starts repeating itself from that point on.

8 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

LCG with maximum period length m

Theorem (Greenberger 1961, Hull and Dobell 1962)

The linear congruential sequence defined by m, a, c, and X0 has
period length m if and only if :

(i) c is relatively prime to m ;

(ii) a− 1 is a multiple of p, for every prime p dividing m ;

(iii) a− 1 is a multiple of 4, if m is a multiple of 4.

Comment
LCGs are obsolete today. And better generators based on register shifts
and xor operations, like the Mersenne Twister – based on a matrix linear
recurrence over a finite binary field F2 – which produces 53-bit precision
floats and has a period of 219937 − 1, have replaced them in most
softwares.

9 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Generic RNG structure
Witout loss of generality, all Random Number Generators (RNGs)
can be described as structure of the form

(
S ,T , τ, ξ, x0

)
, where

S = state space

T = output space

τ : S → S = transition function

ξ : S → T = output function

x0 = seed.

The “random” sequence [u0, u1, ...] generated in T is defined as
ui = ξ(xi), for i > 0, where xi = τ(xi−1) for i > 0.

Example (Linear Congruential Generator)
For instance, in the case of the previous LCG, S = Zm, T = [0, 1),
τ(x) = (ax + c) (mod m), and ξ(x) = x/m. The magic numbers : a (the
multiplier) and c (the increment) are in Z− {0}, whereas m (the
modulus) is in N− {0}.

10 / 35

Multiple recursive generators
Constructing RNGs with longer periods than the linear congruential
generators is possible when using a recursion of higher order.
Let k > 1 and m be prime. A multiple recursive generator (MRG) is an
RNG with S = Zk

m, and state yi = (xi , ..., xi−k+1) at step i evolves
through the recurrence :

xi = τ(yi−1) = (a1xi−1 + ...+ akxi−k) mod m

where ai ∈ Z for j = 1, ..., k with a 6= 0 and the output ξ(yi) is given by
xi/m.
The potential period of an MRG is mk − 1, obtained when the
characteristic polynomial P(z) of the recurrence is primitive over Fm.
That is, the smallest integer r for which z r ≡ 1 mod P(z) is mk − 1.

Examples (Simple MRGs)

1. The multiplicative congruential generator (MRG) where k = 1.

2. The additive lagged-Fibonacci generator, where the transition
function is given by : xi = (xi−r + xi−k) mod m. Proposed magic
numbers are r = 24, k = 55 and m = 224 (Mitchell&Moore 1958).

Multiple recurrences modulo 2

Because of the binary nature of all data and computations, it is
opportune to use a binary state space {0, 1}k and implement
transition functions on F2, where multiplication and division are
implemented with register shifts (<<,>>) and addition modulo 2
is implemented with the xor operator.

Example (Tausworthe generator)

The linear feedback shift register (LFSR), proposed by Tausworthe
(1965), is a MRG with S = Zk

2 and transition function :

xi = (a1xi−1 + ...+ akxi−k) mod 2

where ai ∈ {0, 1} for i = 1, ..., k , and the output value
ui =

∑L
j=1[(xiν+j−1)2−j with ν (the step size) and L (the word

length) being positive integers.
The Tausworthe generator has a maximal period ρ = 2k − 1 if the
transition function has this period ρ and gcd(ρ, ν = 1).

Generalized feedback shift register (GFSR)

The Tausworthe generator has been generalized by replacing the
“bits” xi by vectors xi of L bits. The state yi is then defined as kL
bits vectors (xi , ..., xi−k+1)
The transition function is replaced by a recurrence of the form :

xi = (a1xi−1 + ...+ akxi−k) mod 2

where xi = (xi ,1, ..., xi ,L) and the output value is :

ui =
L∑

j=1

(xi ,j) · 2−j

The maximal period of this generator is still 2k − 1, while the
period could potentially be of the size of the state space
(|S | − 1 = 2kL − 1).

Twisted generalized feedback shift register (TGFSR)

A way to further increase the potentially maximal period of a GFSR
goes by generalizing the recurrence defining the transition function.
To illustrate this construction it is useful to reformulate the GFSR
transition function in matrix notation : xi = Axi−1, where xi are
vectors of kL bits and A is a kL× kL matrix of the form :

A =

0 IL 0 ... 0
0 0 IL ... 0
...

...
... ...

...
0 0 0 ... IL

ak IL ak−1IL ak−2IL ... a1IL

where IL is the L× L identity matrix.
The TGFSR replaces the IL matrix in the last row by more general
matrices. Furthermore the output value ui of the GFSR is
tempered with a series of left and right register shifts.

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

The Mersenne Twister generator
The actually most popular and used TGFSR is the Mersenne
Twister MT19937 generator with magic numbers k = 624
(19× 64) and word size L = 32. It attains a period of 2kL−L+1 − 1
= 219937 − 1 ; very close to the theoretical maximal period of
2kL − 1 = 219968 − 1.
All these multiple recursive RNG designs with state and output space Fk×L

2 , for some
positive integer k and word size L, can be easily described in a generic matrix
notation :

xi = τ(xi−1) = Axi−1,

yi = ξ(xi) = xiB,

where 0 6 i 6 k − 1 ; A is the kL× kL transition matrix ; B is the kL× L output
matrix, both with elements in F2. The output value ui ∈ [0, 1] is computed as follows :

ui =
L∑

j=1

(yi,j−1) · 2−j .

15 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

1. Generating random numbers
Numbers “chosen at random”
Computer generated random numbers
Multiple recursive generators over F2

2. Home brewed generators
Recommendations and traps to watch for
Combining generators
Testing randomness

3. Selected Problems
The random module in Python
Generating random numbers
Generating non uniform random numbers

16 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Definition (From Numerical Recipes p.340)

A home-made generator of random numbers should ideally verify
the following methodological principles :

1. The procedure – deterministic or not – that produces a
random sequence of numbers should be different from, and –
in all measurable respects – statistically uncorrelated with, the
procedure that uses its output ;

2. Any two different random generating procedures ought to
produce statistically the same results if used similarly in a
scientific investigation or application ;

3. A same sequence of random numbers may be regenerated Ad
libitum for testing and debugging purposes.

17 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Traps to watch for

Many out-of-date and inferior methods for generating random
numbers remain in general use. Therefore :
• Never use a generator principally based on a linear congruential generator

(LCG) or a multiplicative linear congruential generator (MLCG).

• Never use a generator with a period less than ∼ 264 ≈ 2× 1019, or any
generator whose period is unknown to you.

• Note that in your scientific reports, when using random numbers, you
should always mention the generator and its period.

• Never use a generator that warns against using its low-order bits. This
indicates an obsolete algorithm (usually a LCG).

• Never use the built-in generators in the C and C++ language, especially
rand and srand. They have no standard implementation and are often of
bad quality.

18 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Best practice

Recommendations for constructing a random number generator :

• An acceptable random generator must combine at least two
ideally unrelated methods.

• The methods combined should evolve independently and share
no state.

• The combination should be by simple operations that do not
produce results less random than their operands.

Reference : Numerical Recipes : The Art of Scientific
Computing (3rd Ed.), W H Press, S A Teukolsky, W T
Vetterling & B P Flannery, Cambridge University Press
2007, Chapter 7, Random Numbers, pp. 340 – 418.

19 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Combining bitwise operators

64-bit Xor (⊕) and bit shifts (<<, >>)

state : x (unsigned 64-bit)
initialize : x 6= 0
update : x ← x ⊕ (x >> a1)

x ← x ⊕ (x << a2)
x ← x ⊕ (x >> a3)

can use as random : x (all bits)
period : 264 − 1 = 1.8446744073709551615× 1019

Triples of magic numbers (a1, a2, a3), that deliver a full period are a.o.

(21, 35, 4), (20, 41, 5), and (17, 31, 8). The MT19937 generator uses, for

instance, this approach as tempering functions, with a quadruple of

magic numbers (11, 7, 15, 18).

20 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Example of simple and fast combined generator

Combining Xor, shifts and an LCG

state : x (unsigned 64-bit)
initialize : x 6= 0 (default : 4101842887655102017)
update : x ← x ⊕ (x >> 21)

x ← x ⊕ (x << 35)
x ← x ⊕ (x >> 4)
x ← 26858216577363387117 · x (mod 264)

can use as random : x (all bits)
period : 1.8× 1019

Source : Numerical recipes, Ranq1, p.351.

21 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Testing equidistribution
Let 〈Un〉 = [u0, u1, u2, ...] be a sequence of random numbers from the
float interval [0.0; 1.0) apparently generated in a uniformly manner.
To test the quality of the random generator, we consider the auxiliary
sequence 〈Yn〉 = [y0, y1, y2, ...] defined by the rule yn = bd × unc, where
d is a positive integer – usually 64, 100, or 128 – also called the discrete
grain of the generator.

When sequence 〈Un〉 is indeed uniformly distributed, we will observe a

sequence 〈Yn〉 of equidistributed integers between 0 and d − 1.

A generator produces a good uniform random sequence 〈Un〉 if, for a large grain

d and n→∞, the relative frequency f (i) of each integer i from 0 to d − 1 in

〈Yn〉 converges (but not suspiciously fast) to 1/d .

The quality of a given random generator may now be assessed with a

two-tailed Chi-square test of difference between the empirical f (i)

distribution and the theoretical uniform 1/d distribution. Below 5% or

above 95% differences indicate the likeliness of a suspicious

non-randomness in 〈Un〉. 22 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Serial test

• We reconsider the auxilliary 〈Yn〉 sequence with discrete grain
d and count the number of times the pair (y2j , y2j+1) = (q, r)
occurs, for 0 ≤ j < n/2, q 6= r and 0 ≤ q, r ≤ d .

• These counts are to be made for each pair of integers (q, r)
with 0 ≤ q, r ≤ d , and the Chi-square test is applied to these
k = d2 categories with theoretical uniform relative frequency
1/d2 in each category.

• To keep the length n of the random sequence large compared
to k , d will be chosen of smaller value than for the
equidistributional test.

23 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Gap test

• Another test is to examine the length of “gaps” between occurences
of uj in a certain range. If α and β are two real numbers with
0 ≤ α < β ≤ 1, we want to consider the lengths of consecutive
subsequences [uj , uj+1, ..., uj+r] in which the consecutive r values
uj+k , for k = 1, ...r , remain between α and β. This situation will be
counted as a gap of length r .

• With given values α and β and a maximal gap length t, let Cr for
r = 0, ..., t − 1 count the occurences of gaps of length 0, ..., t − 1,
and Ct the gaps of length r ≥ t. If p = β − α, the theoretical
counts for each gap length r , is pr = p(1− p)r for 0 ≤ r < t − 1
and pt = (1− p)t .

• Again, a Chi-square test, comparing the Cr with the pr distribution
may be used in order to assess the likeliness of a suspicious
non-randomness of the gap lengths observed in the sequence 〈Un〉.

24 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Coupon collector’s test

• This test relates the frequency test to the previous gap test. We use
the auxiliary sequence 〈Yn〉 and we observe the lengths of
subsequences yj+1, yj+2, ..., yj+r that are required to get a complete
set of integers – a coupon collector seqment – from 0 to d − 1.

• With a given maximal subsequence length t, let Cr for
r = d , ..., t − 1 count the occurences of coupon collector segments
of length d , d + 1, ..., t − 1, and Ct the segments of length r ≥ t.

• The theoretical count for each coupon collector segment of length r ,
is

pr =
d!

d r

{r − 1
d − 1

}
, d ≤ r < t − 1; pt = 1− d!

d r

{r
d

}
.

• Similarly, a Chi-square test, comparing the empirical Cr with the
theoretical pr distribution, may be used in order to assess the
likeliness of a suspicious non-randomness of the coupon collector
segments.

25 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Up and down runs test

• A sequence 〈Un〉 of uniform random numbers may also be tested for
“runs up” and “runs down” segments, by examining the length of
monotone portions of it. Let [uj+0, uj+1, ..., uj+r] be a subsequence
of length r such that either uj+0 ≥ uj+1 ≥ ... ≥ uj+r , or,
uj+0 ≤ uj+1 ≤ ... ≤ uj+r .

• Given a maximal subsequence length t, let Cr for r = 1, ..., t − 1
count the occurences of separated monotone, either up, or, down
runs of length 1, 2, ..., t − 1, and Ct the same runs of length r ≥ t.

• Assuming that a monotone run of length r occurs with probability
1/r !− 1/(r + 1)!, the theoretical relative count for each length r ,
gives pr = 1/r !− 1/(r + 1)! for r < t and pt = 1/t!.

• And, again, we may use a Chi-square test, comparing the empirical
Cr with the theoretical pr distribution, for assessing the likeliness of
a suspicious non-randomness of “runs up” or “runs down” segments.

26 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

1. Generating random numbers
Numbers “chosen at random”
Computer generated random numbers
Multiple recursive generators over F2

2. Home brewed generators
Recommendations and traps to watch for
Combining generators
Testing randomness

3. Selected Problems
The random module in Python
Generating random numbers
Generating non uniform random numbers

27 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Generating random floats with Python3

random is the basic module for generating random numbers in
Python. Python3 uses the Mersenne Twister as the core
generator.
Some code for generating random floats :

1 Python 3 . 2 . 3 (d e f a u l t , Oct 19 2012 , 1 9 : 5 3 : 5 7)
2 Type ” h e l p ” , ” c o p y r i g h t ” , ” c r e d i t s ” or ” l i c e n s e ”

f o r more i n f o r m a t i o n .
3 >>> from random import seed , random , u n i f o r m
4 >>> s e e d (1 0 0) # S e t t i n g X 0
5 >>> p r i n t (’ random number on (0 , 1) : ’ , random ())
6 random number on (0 , 1) : 0 .1456692551041303
7 >>> p r i n t (’ random number on (−1 ,1) : ’ ,\
8 u n i f o r m (−1 ,1))
9 random number on (−1 ,1) : −0.0901459909719573

B http://docs.python.org/library/random.html

28 / 35

Random integers and choice

• randrange([start], stop[, step])
Returns a randomly selected element from range(start,
stop, step).

1 p r i n t ([r a n d r a n g e (−100 ,100 ,5) f o r i i n range (1 0)])
2 [−85 , 90 , −25, 95 , 60 , −10, 85 , 5 , 65 , 5]

• randint(a, b)
Returns a random integer N such that a 6 N 6 b.

1 p r i n t ([r a n d i n t (0 , 5) f o r i i n range (1 0)])
2 [2 , 0 , 5 , 5 , 1 , 2 , 1 , 2 , 1 , 1]

• choice(seq)
Returns a random element from the non-empty sequence seq.
If seq is empty, raises IndexError.

1 seq = [’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’]
2 p r i n t ([c h o i c e (seq) f o r i i n range (7)])
3 [’ e ’ , ’ c ’ , ’ d ’ , ’ d ’ , ’ a ’ , ’ a ’ , ’ c ’]

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Shuffling sequences and drawing samples

• shuffle(x[, random])

Shuffles the sequence x in place. The optional argument
random is a 0-argument function returning a random float in
[0.0, 1.0) ; by default, this is the function random().Note that
for even rather small len(x), the total number of
permutations of x is larger than the period of most random
number generators ; this implies that most permutations of a
long sequence can never be generated.

• sample(population, k)

Returns a k length list of unique elements chosen from the
population sequence. Used for random sampling without
replacement. Example : sample(xrange(10000000), 60).

30 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Comparing real random and pseudo-random number
sequences

Exercise
The Python3 random module provides the class SystemRandom

that uses the os.urandom() function for generating ’real’ random
numbers from electronic sources provided by the operating system.

1. Generate two sequences of 10 000 random floats in the range
[0.0, 1.0), one, from the systemRandom generator and, the
other, from the standard Mersenne Twister generator.

2. Does there appear a noticeable difference in randomness
quality between both sequences ?

31 / 35

Random numbers from a MLCG
Exercise

1. Develop in Python a linear congruential generator for random floats
between 0 an 1 of the following type :

x0 = seed (1)

xn ≡ a · xn−1 + c (mod m) (2)

where a, c, m and seed may be given at run time.

2. Generate a csv data file containing a sample of 10000 random
numbers obtained with your generator when using each one of the
following sets of magic numbers :

i. a = 3141592653, c = 2718281829, m = 235, seed = 0
ii. a = 27 + 1, c = 1, m = 235, seed = 0
iii. a = 23, c = 0, m = 108 + 1, seed = 47594118
iv. a = 218 + 1, c = 1, m = 235, seed = 314159265

3. Test the quality of the randomness of the random sequences
obtained with the different settings of the magic numbers above.

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Discrete empirical random laws

Exercise
You are requested to draw a sample of 1000 random integers in the
range [0; 9] along the following empirical probability distribution :

0 1 2 3 4
0.0478 0.3349 0.2392 0.1435 0.0957

5 6 7 8 9
0.0670 0.0478 0.0096 0.0096 0.048

1. Write a Python program for generating this sample.

2. Compare the sample distribution with the empirical one.

33 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Random triangular floats

Exercise (Triangular law)

You are requested to draw a sample of 1000 random floats in
[−1.0; 1.0] from a triangular distribution with mode = 0.0 :

1. Write a Python program for generating this sample using a
uniform random float generator.

2. Verify the triangular aspect of the sample distribution.

34 / 35

Content of the lecture RNGs Home brewed generators Selected Problems Bibliography

Bibliography

Christiane Lemieux, Monte Carlo and Quasi Monte Carlo Sampling.
Springer series in Statistics, New York 2009, Chapter 3 : Pseudorandom
Number Generators pp 57–86.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery, Numerical Recipes : The Art of Scientific Computing. Third
Edition, Cambridge University Press, Cambridge UK 2007, Chapter 7
Random Numbers pp 340–418.

Donald E. Knuth, The Art of Computer Programming : Seminumerical
Algorithms. Vol. 2, Third Edition, Addison-Wesley, Boston, 1998,
Chapter 3 Random Numbers pp 1–193.

M. Matsumoto and T. Nishimura (1998), “Mersenne twister : a
623-dimensionally equidistributed uniform pseudo-random number
generator”. ACM Transactions on Modeling and Computer Simulation
8 (1) : 3–30

35 / 35

