
Documentation of the Digraph3 software collection

Tutorials and Advanced Topics
Raymond BISDORFF

Luxembourg, 2020

Last updated : October 20, 2023

This documentation is dedicated to our

late colleague and dear friend

Prof. Marc ROUBENS.

More documents are freely available here

https://digraph3.readthedocs.io/en/latest

B. Digraph3 Advanced Topics

HTML Version

In this part of the Digraph3 documentation, we provide an insight in computational en-
hancements one may get when working in a bipolar-valued epistemic logic framework, like
- easily coping with missing data and uncertain criterion significance weights, - comput-
ing valued ordinal correlations between bipolar-valued outranking digraphs, - compting
digraph kernels and solving bipolar-valued kernel equation systems and, - testing for sta-
bility and confidence of outranking statements when facing uncertain performance criteria
significance weights or decision objectives’ importance weights.

Contents

1 Enhancing the outranking based MCDA approach 2
1.1 Coping with missing data and indeterminateness 2
1.2 On confident outrankings with uncertain criteria significance weights . . 7
1.3 On stable outrankings with ordinal criteria significance weights 17
1.4 On unopposed outrankings with multiple decision objectives 28

2 Enhancing social choice procedures 33
2.1 Condorcet ’s critical perspective on the simple plurality voting rule 34
2.2 Two-stage elections with multipartisan primary selection 42
2.3 Tempering plurality tyranny effects with bipolar approval voting 51
2.4 Selecting the winner of a primary election: a critical commentary 65

3 Theoretical advancements 69
3.1 Ordinal correlation equals bipolar-valued relational equivalence 69
3.2 On computing digraph kernels . 79
3.3 Bipolar-valued kernel membership characteristic vectors 99
3.4 On characterizing bipolar-valued outranking digraphs 107
3.5 Consensus quality of the bipolar-valued outranking relation 115

4 Appendix 125

References 125

1

https://digraph3.readthedocs.io/en/latest/index.html

1 Enhancing the outranking based MCDA approach

“The goal of our research was to design a resolution method [..] that is easy
to put into practice, that requires as few and reliable hypotheses as possible,
and that meets the needs [of the decision maker].”

—Benayoun R, Roy B, Sussmann B13

� Coping with missing data and indeterminateness (page 2)

� On confident outrankings with uncertain criteria significance weights (page 7)

� On stable outrankings with ordinal criteria significance weights (page 17)

� On unopposed outrankings with multiple decision objectives (page 28)

1.1 Coping with missing data and indeterminateness

In a stubborn keeping with a two-valued logic, where every argument can only be true or
false, there is no place for efficiently taking into account missing data or logical indeter-
minateness. These cases are seen as problematic and, at best are simply ignored. Worst,
in modern data science, missing data get often replaced with fictive values, potentially
falsifying hence all subsequent computations.

In social choice problems like elections, abstentions are, however, frequently observed and
represent a social expression that may be significant for revealing non represented social
preferences.

In marketing studies, interviewees will not always respond to all the submitted questions.
Again, such abstentions do sometimes contain nevertheless valid information concerning
consumer preferences.

A motivating data set

Let us consider such a performance tableau in file graffiti07.py gathering a Movie Maga-
zine ‘s rating of some movies that could actually be seen in town1 (see Fig. 1.1).

1 >>> from outrankingDigraphs import *

2 >>> t = PerformanceTableau('graffiti07')

3 >>> t.showHTMLPerformanceTableau(title='Graffiti Star wars',

4 ... ndigits=0)

13 [ROY-1966p]
1 Graffiti, Edition Revue Luxembourg, September 2007, p. 30. You may find the data file graffiti07.py

(perfTabs.PerformanceTableau Format) in the examples directory of the Digraph3 resources

2

_static/graffiti07.py

Fig. 1.1: Graffiti magazine’s movie ratings from September 2007

15 journalists and movie critics provide here their rating of 25 movies: 5 stars (master-
piece), 4 stars (must be seen), 3 stars (excellent), 2 stars (good), 1 star (could be seen),
-1 star (I do not like), -2 (I hate), NA (not seen).

To aggregate all the critics’ rating opinions, the Graffiti magazine provides for each movie
a global score computed as an average grade, just ignoring the not seen data. These
averages are thus not computed on comparable denominators; some critics do indeed use
a more or less extended range of grades. The movies not seen by critic SJ, for instance,
are favored, as this critic is more severe than others in her grading. Dropping the movies
that were not seen by all the critics is here not possible either, as no one of the 25 movies
was actually seen by all the critics. Providing any value for the missing data will as well
always somehow falsify any global value scoring. What to do ?

A better approach is to rank the movies on the basis of pairwise bipolar-valued at least as
well rated as opinions. Under this epistemic argumentation approach, missing data are
naturally treated as opinion abstentions and hence do not falsify the logical computations.
Such a ranking (see the tutorial on Ranking with incommensurable performance criteria)
of the 25 movies is provided, for instance, by the heat map view shown in Fig. 1.2.

3

>>> t.showHTMLPerformanceHeatmap(Correlations=True,

... rankingRule='NetFlows',

... ndigits=0)

Fig. 1.2: Graffiti magazine’s ordered movie ratings from September 2007

There is no doubt that movie mv_QS, with 6 ‘must be seen’ marks, is correctly best-
ranked and the movie mv_TV is worst-ranked with five ‘don’t like’ marks.

4

Modelling pairwise bipolar-valued rating opinions

Let us explicitly construct the underlying bipolar-valued outranking digraph and consult
in Fig. 1.3 the pairwise characteristic values we observe between the two best-ranked
movies, namely mv_QS and mv_RR.

1 >>> g = BipolarOutrankingDigraph(t)

2 >>> g.recodeValuation(-19,19) # integer characteristic values

3 >>> g.showHTMLPairwiseOutrankings('mv_QS','mv_RR')

Fig. 1.3: Pairwise comparison of the two best-ranked movies

Six out of the fifteen critics have not seen one or the other of these two movies. Notice
the higher significance (3) that is granted to two locally renowned movie critics, namely
JH and VT. Their opinion counts for three times the opinion of the other critics. All
nine critics that have seen both movies, except critic MR, state that mv_QS is rated at
least as well as mv_RR and the balance of positive against negative opinions amounts
to +11, a characteristic value which positively validates the outranking situation with a
majority of (11/19 + 1.0) / 2.0 = 79%.

The complete table of pairwise majority margins of global ‘at least as well rated as ’
opinions, ranked by the same rule as shown in the heat map above (see Fig. 1.2), may be
shown in Fig. 1.4.

1 >>> ranking = g.computeNetFlowsRanking()

2 >>> g.showHTMLRelationTable(actionsList=ranking, ndigits=0,

3 ... tableTitle='Bipolar characteristic values of\

4 ... "rated at least as good as" situations')

5

Fig. 1.4: Pairwise majority margins of ‘at least as well rated as ’ rating opinions

Positive characteristic values, validating a global ‘at least as well rated as ’ opinion are
marked in light green (see Fig. 1.4). Whereas negative characteristic values, invalidating
such a global opinion, are marked in light red. We may by the way notice that the best-
ranked movie mv_QS is indeed a Condorcet winner, i.e. better rated than all the other
movies by a 65% majority of critics. This majority may be assessed from the average
determinateness of the given bipolar-valued outranking digraph g.

>>> print('%.0f %% ' % g.computeDeterminateness(InPercents=True))

65%

Notice also the indeterminate situation we observe, for instance, when comparing movie
mv_PE with movie mv_NP.

>>> g.showHTMLPairwiseComparison('mv_PE','mv_NP')

6

Fig. 1.5: Indeterminate pairwise comparison example

Only eight, out of the fifteen critics, have seen both movies and the positive opinions do
neatly balance the negative ones. A global statement that mv_PE is ‘at least as well
rated as ’ mv_NP may in this case hence neither be validated, nor invalidated; a
preferential situation that cannot be modelled with any scoring approach.

It is fair, however, to eventually mention here that the Graffiti magazine’s average scoring
method is actually showing a very similar ranking. Indeed, average scores usually confirm
well all evident pairwise comparisons, yet enforce comparability for all less evident ones.

Notice finally the ordinal correlation tau values in Fig. 1.2 3rd row. How may we compute
these ordinal correlation indexes ?

Back to Content Table (page 1)

1.2 On confident outrankings with uncertain criteria significance

weights

� Modelling uncertain criteria significance weights (page 8)

� Bipolar-valued likelihood of ‘’at least as good as ” situations (page 9)

� Confidence level of outranking situations (page 12)

When modelling preferences following the outranking approach, the signs of the majority
margins do sharply distribute validation and invalidation of pairwise outranking situa-
tions. How can we be confident in the resulting outranking digraph, when we acknowledge

7

the usual imprecise knowledge of criteria significance weights coupled with small majority
margins?

To answer this question, one usually requires qualified majority margins for confirming
outranking situations. But how to choose such a qualifying majority level: two third,
three fourth of the significance weights ?

In this tutorial we propose to link the qualifying significance majority with a required
alpha%-confidence level. We model therefore the significance weights as random variables
following more or less widespread distributions around an average significance value that
corresponds to the given deterministic weight. As the bipolar-valued random credibility
of an outranking statement hence results from the simple sum of positive or negative
independent random variables, we may apply the Central Limit Theorem (CLT) for com-
puting the bipolar likelihood that the expected majority margin will indeed be positive,
respectively negative.

Modelling uncertain criteria significance weights

Let us consider the significance weights of a family F of m criteria to be independent
random variables Wj, distributing the potential significance weights of each criterion j
= 1, . . . , m around a mean value E(Wj) with variance V(Wj).

Choosing a specific stochastic model of uncertainty is usually application specific. In the
limited scope of this tutorial, we will illustrate the consequence of this design decision
on the resulting outranking modelling with four slightly different models for taking into
account the uncertainty with which we know the numerical significance weights: uniform,
triangular, and two models of Beta laws, one more widespread and, the other, more
concentrated.

When considering, for instance, that the potential range of a significance weight is dis-
tributed between 0 and two times its mean value, we obtain the following random variates:

1. A continuous uniform distribution on the range 0 to 2E(Wj). Thus Wj ~ U(0,
2E(Wj)) and V(Wj) = 1/3(E(Wj))^2;

2. A symmetric beta distribution with, for instance, parameters alpha = 2 and beta
= 2. Thus, Wi ~ Beta(2,2) * 2E(Wj) and V(Wj) = 1/5(E(Wj))^2.

3. A symmetric triangular distribution on the same range with mode E(Wj). Thus
Wj ~ Tr(0, 2E(Wj), E(Wj)) with V(Wj) = 1/6(E(Wj))^2;

4. A narrower beta distribution with for instance parameters alpha = 4 and beta =
4. Thus Wj ~ Beta(4,4) * 2E(Wj) , V(Wj) = 1/9(E(Wj))^2.

8

Fig. 1.6: Four models of uncertain significance weights

It is worthwhile noticing that these four uncertainty models all admit the same expected
value, E(Wj), however, with a respective variance which goes decreasing from 1/3, to 1/9
of the square of E(W) (see Fig. 1.6).

Bipolar-valued likelihood of ‘’at least as good as ” situations

Let A = {x, y, z,. . . } be a finite set of n potential decision actions, evaluated on F =
{1,. . . , m}, a finite and coherent family of m performance criteria. On each criterion j in
F, the decision actions are evaluated on a real performance scale [0; Mj], supporting an
upper-closed indifference threshold indj and a lower-closed preference threshold prj such
that 0 <= indj < prj <= Mj. The marginal performance of object x on criterion j is
denoted xj. Each criterion j is thus characterising a marginal double threshold order ≥𝑗

on A (see Fig. 1.7):

𝑟(𝑥 ≥𝑗 𝑦) =

⎧⎪⎨⎪⎩
+1 if 𝑥𝑗 − 𝑦𝑗 ≥ −𝑖𝑛𝑑𝑗,

−1 if 𝑥𝑗 − 𝑦𝑗 ≤ −𝑝𝑟𝑗,

0 otherwise.

Semantics of the marginal bipolar-valued characteristic function:

� +1 signifies x is performing at least as good as y on criterion j,

� -1 signifies that x is not performing at least as good as y on criterion j,

9

� 0 signifies that it is unclear whether, on criterion j, x is performing at least as
good as y.

Fig. 1.7: Bipolar-valued outranking characteristic function

Each criterion j in F contributes the random significance Wj of his ‘at least as good as ’
characteristic 𝑟(𝑥 ≥𝑗 𝑦) to the global characteristic 𝑟(𝑥 ≥ 𝑦) in the following way:

𝑟(𝑥 ≥ 𝑦) =
∑︁
𝑗∈𝐹

𝑊𝑗 × 𝑟(𝑥 ≥𝑗 𝑦))

Thus, 𝑟(𝑥 ≥ 𝑦) becomes a simple sum of positive or negative independent random vari-
ables with known means and variances where 𝑟(𝑥 ≥ 𝑦) > 0 signifies x is globally per-
forming at least as good as y, 𝑟(𝑥 ≥ 𝑦) < 0 signifies that x is not globally performing
at least as good as y, and 𝑟(𝑥 ≥ 𝑦) = 0 signifies that it is unclear whether x is globally
performing at least as good as y.

From the Central Limit Theorem (CLT), we know that such a sum of random variables
leads, with m getting large, to a Gaussian distribution Y with

𝐸(𝑌) =
∑︀

𝑗∈𝐹
(︀
𝐸(𝑊𝑗)× 𝑟(𝑥 ≥𝑗 𝑦)

)︀
, and

𝑉 (𝑌) =
∑︀

𝑗∈𝐹
(︀
𝑉 (𝑊𝑗)× |𝑟(𝑥 ≥𝑗 𝑦)|

)︀
.

And the likelihood of validation, respectively invalidation of an ‘at least as good
as ’ situation, denoted 𝑙ℎ(𝑥 ≥ 𝑦), may hence be assessed by the probability P(Y>0) =
1.0 - P(Y<=0) that Y takes a positive, resp. P(Y<0) takes a negative value. In the
bipolar-valued case here, we can judiciously make usage of the standard Gaussian error
function , i.e. the bipolar 2P(Z) - 1.0 version of the standard Gaussian P(Z) probability
distribution function:

𝑙ℎ(𝑥 ≥ 𝑦) = −erf
(︀ 1√

2

−𝐸(𝑌)√︀
𝑉 (𝑌)

)︀

10

The range of the bipolar-valued 𝑙ℎ(𝑥 ≥ 𝑦) hence becomes [-1.0;+1.0], and −𝑙ℎ(𝑥 ≥ 𝑦) =
𝑙ℎ(𝑥 ̸≥ 𝑦) , i.e. a negative likelihood represents the likelihood of the correspondent
negated ‘at least as good as ’ situation. A likelihood of +1.0 (resp. -1.0) means the
corresponding preferential situation appears certainly validated (resp. invalidated).

Example

Let x and y be evaluated wrt 7 equisignificant criteria; Four criteria positively support
that x is as least as good performing than y and three criteria support that x is not at
least as good performing than y. Suppose E(Wj) = w for j = 1,. . . ,7 and Wj ~ Tr(0, 2w,
w) for j = 1,. . . 7. The expected value of the global ‘at least as good as ’ characteristic
value becomes: 𝐸

(︀
𝑟(𝑥 ≥ 𝑦)

)︀
= 4𝑤 − 3𝑤 = 𝑤 with a variance 𝑉

(︀
𝑟(𝑥 ≥ 𝑦)

)︀
= 71

6
𝑤2.

If w = 1, 𝐸
(︀
𝑟(𝑥 ≥ 𝑦)

)︀
= 1 and 𝑠𝑑

(︀
𝑟(𝑥 ≥ 𝑦)

)︀
= 1.08. By the CLT, the bipolar

likelihood of the at least as good performing situation becomes: 𝑙ℎ(𝑥 ≥ 𝑦) = 0.66,
which corresponds to a global support of (0.66 + 1.0)/2 = 83% of the criteria significance
weights.

AMonte Carlo simulation with 10 000 runs empirically confirms the effective convergence
to a Gaussian (see Fig. 1.8 realised with gretl4).

Fig. 1.8: Distribution of 10 000 random outranking characteristic values

Indeed, 𝑟(𝑥 ≥ 𝑦) ⇝ 𝑌 = 𝒩 (1.03, 1.089), with an empirical probability of observing a
negative majority margin of about 17%.

4 The Gnu Regression, Econometrics and Time-series Library http://gretl.sourceforge.net/

11

http://gretl.sourceforge.net/

Confidence level of outranking situations

Now, following the classical outranking approach (see [BIS-2013p]), we may say, from an
epistemic perspective, that decision action x outranks decision action y at confidence
level alpha %, when

1. an expected majority of criteria validates, at confidence level alpha % or higher, a
global ‘at least as good as ’ situation between x and y, and

2. no considerably less performing is observed on a discordant criterion.

Dually, decision action x does not outrank decision action y at confidence level alpha
%, when

1. an expected majority of criteria at confidence level alpha % or higher, invalidates
a global ‘at least as good as ’ situation between x and y, and

2. no considerably better performing situation is observed on a concordant criterion.

Time for a coded example

Let us consider the following random performance tableau.

1 >>> from randomPerfTabs import RandomPerformanceTableau

2 >>> t = RandomPerformanceTableau(

3 ... numberOfActions=7,

4 ... numberOfCriteria=7,seed=100)

5

6 >>> t.showPerformanceTableau(Transposed=True)

7 *---- performance tableau -----*

8 criteria | weights | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

9 ---------|--

10 'g1' | 1 | 15.17 44.51 57.87 58.00 24.22 29.10 96.58

11 'g2' | 1 | 82.29 43.90 NA 35.84 29.12 34.79 62.22

12 'g3' | 1 | 44.23 19.10 27.73 41.46 22.41 21.52 56.90

13 'g4' | 1 | 46.37 16.22 21.53 51.16 77.01 39.35 32.06

14 'g5' | 1 | 47.67 14.81 79.70 67.48 NA 90.72 80.16

15 'g6' | 1 | 69.62 45.49 22.03 33.83 31.83 NA 48.80

16 'g7' | 1 | 82.88 41.66 12.82 21.92 75.74 15.45 6.05

For the corresponding confident outranking digraph, we require a confidence level of alpha
= 90%. The ConfidentBipolarOutrankingDigraph class provides such a construction.

1 >>> from outrankingDigraphs import\

2 ... ConfidentBipolarOutrankingDigraph

3

4 >>> g90 = ConfidentBipolarOutrankingDigraph(t,confidence=90)

5 >>> print(g90)

6 *------- Object instance description ------*

7 Instance class : ConfidentBipolarOutrankingDigraph

8 Instance name : rel_randomperftab_CLT

(continues on next page)

12

(continued from previous page)

9 # Actions : 7

10 # Criteria : 7

11 Size : 15

12 Uncertainty model : triangular(a=0,b=2w)

13 Likelihood domain : [-1.0;+1.0]

14 Confidence level : 0.80 (90.0%)

15 Confident majority : 0.14 (57.1%)

16 Determinateness (%) : 62.07

17 Valuation domain : [-1.00;1.00]

18 Attributes : ['name', 'bipolarConfidenceLevel',

19 'distribution', 'betaParameter', 'actions',

20 'order', 'valuationdomain', 'criteria',

21 'evaluation', 'concordanceRelation',

22 'vetos', 'negativeVetos',

23 'largePerformanceDifferencesCount',

24 'likelihoods', 'confidenceCutLevel',

25 'relation', 'gamma', 'notGamma']

The resulting 90% confident expected outranking relation is shown below.

1 >>> g90.showRelationTable(LikelihoodDenotation=True)

2 * ---- Outranking Relation Table -----

3 r/(lh) | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

4 -------|--

5 'a1' | +0.00 +0.71 +0.29 +0.29 +0.29 +0.29 +0.00

6 | (-) (+1.00) (+0.95) (+0.95) (+0.95) (+0.95) (+0.65)

7 'a2' | -0.71 +0.00 -0.29 +0.00 +0.00 +0.29 -0.57

8 |(-1.00) (-) (-0.95) (-0.65) (+0.73) (+0.95) (-1.00)

9 'a3' | -0.29 +0.29 +0.00 -0.29 +0.00 +0.00 -0.29

10 |(-0.95) (+0.95) (-) (-0.95) (-0.73) (-0.00) (-0.95)

11 'a4' | +0.00 +0.00 +0.57 +0.00 +0.29 +0.57 -0.43

12 |(-0.00) (+0.65) (+1.00) (-) (+0.95) (+1.00) (-0.99)

13 'a5' | -0.29 +0.00 +0.00 +0.00 +0.00 +0.29 -0.29

14 |(-0.95) (-0.00) (+0.73) (-0.00) (-) (+0.99) (-0.95)

15 'a6' | -0.29 +0.00 +0.00 -0.29 +0.00 +0.00 +0.00

16 |(-0.95) (-0.00) (+0.73) (-0.95) (+0.73) (-) (-0.00)

17 'a7' | +0.00 +0.71 +0.57 +0.43 +0.29 +0.00 +0.00

18 |(-0.65) (+1.00) (+1.00) (+0.99) (+0.95) (-0.00) (-)

19 Valuation domain : [-1.000; +1.000]

20 Uncertainty model : triangular(a=2.0,b=2.0)

21 Likelihood domain : [-1.0;+1.0]

22 Confidence level : 0.80 (90.0%)

23 Confident majority : 0.14 (57.1%)

24 Determinateness : 0.24 (62.1%)

The (lh) figures, indicated in the table above, correspond to bipolar likelihoods and the
required bipolar confidence level equals (0.90+1.0)/2 = 0.80 (see Line 22 above). Action

13

‘a1 ’ thus confidently outranks all other actions, except ‘a7 ’ where the actual likelihood
(+0.65) is lower than the required one (0.80) and we furthermore observe a considerable
counter-performance on criterion ‘g1 ’.

Notice also the lack of confidence in the outranking situations we observe between action
‘a2 ’ and actions ‘a4 ’ and ‘a5 ’. In the deterministic case we would have 𝑟(𝑎2 ≥ 𝑎4) =
−0.143 and 𝑟(𝑎2 ≥ 𝑎5) = +0.143 . All outranking situations with a characteristic value
lower or equal to abs(0.143), i.e. a majority support of 1.143/2 = 57.1% and less, appear
indeed to be not confident at level 90% (see Line 23 above).

We may draw the corresponding strict 90%-confident outranking digraph, oriented by its
initial and terminal strict prekernels (see Fig. 1.9).

1 >>> gcd90 = ~ (-g90)

2 >>> gcd90.showPreKernels()

3 *--- Computing preKernels ---*

4 Dominant preKernels :

5 ['a1', 'a7']

6 independence : 0.0

7 dominance : 0.2857

8 absorbency : -0.7143

9 covering : 0.800

10 Absorbent preKernels :

11 ['a2', 'a5', 'a6']

12 independence : 0.0

13 dominance : -0.2857

14 absorbency : 0.2857

15 covered : 0.583

16 >>> gcd90.exportGraphViz(fileName='confidentOutranking',

17 ... firstChoice=['a1', 'a7'],lastChoice=['a2', 'a5', 'a6'])

18

19 *---- exporting a dot file for GraphViz tools ---------*

20 Exporting to confidentOutranking.dot

21 dot -Grankdir=BT -Tpng confidentOutranking.dot -o confidentOutranking.

→˓png

14

Fig. 1.9: Strict 90%-confident outranking digraph oriented by its prekernels

Now, what becomes this 90%-confident outranking digraph when we require a stronger
confidence level of, say 99% ?

1 >>> g99 = ConfidentBipolarOutrankingDigraph(t,confidence=99)

2 >>> g99.showRelationTable()

3 * ---- Outranking Relation Table -----

4 r/(lh) | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

5 -------|--

6 'a1' | +0.00 +0.71 +0.00 +0.00 +0.00 +0.00 +0.00

7 | (-) (+1.00) (+0.95) (+0.95) (+0.95) (+0.95) (+0.65)

8 'a2' | -0.71 +0.00 +0.00 +0.00 +0.00 +0.00 -0.57

9 | (-1.00) (-) (-0.95) (-0.65) (+0.73) (+0.95) (-1.00)

10 'a3' | +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

11 | (-0.95) (+0.95) (-) (-0.95) (-0.73) (-0.00) (-0.95)

12 'a4' | +0.00 +0.00 +0.57 +0.00 +0.00 +0.57 -0.43

13 | (-0.00) (+0.65) (+1.00) (-) (+0.95) (+1.00) (-0.99)

14 'a5' | +0.00 +0.00 +0.00 +0.00 +0.00 +0.29 +0.00

15 | (-0.95) (-0.00) (+0.73) (-0.00) (-) (+0.99) (-0.95)

16 'a6' | +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

17 | (-0.95) (-0.00) (+0.73) (-0.95) (+0.73) (-) (-0.00)

18 'a7' | +0.00 +0.71 +0.57 +0.43 +0.00 +0.00 +0.00

19 | (-0.65) (+1.00) (+1.00) (+0.99) (+0.95) (-0.00) (-)

20 Valuation domain : [-1.000; +1.000]

21 Uncertainty model : triangular(a=2.0,b=2.0)

(continues on next page)

15

(continued from previous page)

22 Likelihood domain : [-1.0;+1.0]

23 Confidence level : 0.98 (99.0%)

24 Confident majority : 0.29 (64.3%)

25 Determinateness : 0.13 (56.6%)

At 99% confidence, the minimal required significance majority support amounts to 64.3%
(see Line 24 above). As a result, most outranking situations don’t get anymore validated,
like the outranking situations between action ‘a1 ’ and actions ‘a3 ’, ‘a4 ’, ‘a5 ’ and ‘a6 ’
(see Line 5 above). The overall epistemic determination of the digraph consequently
drops from 62.1% to 56.6% (see Line 25).

Finally, what becomes the previous 90%-confident outranking digraph if the uncertainty
concerning the criteria significance weights is modelled with a larger variance, like uniform
variates (see Line 2 below).

1 >>> gu90 = ConfidentBipolarOutrankingDigraph(t,

2 ... confidence=90,distribution='uniform')

3

4 >>> gu90.showRelationTable()

5 * ---- Outranking Relation Table -----

6 r/(lh) | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

7 -------|--

8 'a1' | +0.00 +0.71 +0.29 +0.29 +0.29 +0.29 +0.00

9 | (-) (+1.00) (+0.84) (+0.84) (+0.84) (+0.84) (+0.49)

10 'a2' | -0.71 +0.00 -0.29 +0.00 +0.00 +0.29 -0.57

11 | (-1.00) (-) (-0.84) (-0.49) (+0.56) (+0.84) (-1.00)

12 'a3' | -0.29 +0.29 +0.00 -0.29 +0.00 +0.00 -0.29

13 | (-0.84) (+0.84) (-) (-0.84) (-0.56) (-0.00) (-0.84)

14 'a4' | +0.00 +0.00 +0.57 +0.00 +0.29 +0.57 -0.43

15 | (-0.00) (+0.49) (+1.00) (-) (+0.84) (+1.00) (-0.95)

16 'a5' | -0.29 +0.00 +0.00 +0.00 +0.00 +0.29 -0.29

17 | (-0.84) (-0.00) (+0.56) (-0.00) (-) (+0.92) (-0.84)

18 'a6' | -0.29 +0.00 +0.00 -0.29 +0.00 +0.00 +0.00

19 | (-0.84) (-0.00) (+0.56) (-0.84) (+0.56) (-) (-0.00)

20 'a7' | +0.00 +0.71 +0.57 +0.43 +0.29 +0.00 +0.00

21 | (-0.49) (+1.00) (+1.00) (+0.95) (+0.84) (-0.00) (-)

22 Valuation domain : [-1.000; +1.000]

23 Uncertainty model : uniform(a=2.0,b=2.0)

24 Likelihood domain : [-1.0;+1.0]

25 Confidence level : 0.80 (90.0%)

26 Confident majority : 0.14 (57.1%)

27 Determinateness : 0.24 (62.1%)

Despite lower likelihood values (see the g90 relation table above), we keep the same
confident majority level of 57.1% (see Line 25 above) and, hence, also the same 90%-
confident outranking digraph.

16

Note: For concluding, it is worthwhile noticing again that it is in fact the neutral value
of our bipolar-valued epistemic logic that allows us to easily handle alpha% confidence or
not of outranking situations when confronted with uncertain criteria significance weights.
Remarkable furthermore is the usage, the standard Gaussian error function (erf)
provides by delivering signed likelihood values immediately concerning either a positive
relational statement, or when negative, its negated version.

Back to Content Table (page 1)

1.3 On stable outrankings with ordinal criteria significance weights

� Cardinal or ordinal criteria significance weights (page 17)

� Qualifying the stability of outranking situations (page 19)

� Computing the stability denotation of outranking situations (page 23)

� Robust bipolar-valued outranking digraphs (page 25)

Cardinal or ordinal criteria significance weights

The required cardinal significance weights of the performance criteria represent the
Achilles ’ heel of the outranking approach. Rarely will indeed a decision maker be cogni-
tively competent for suggesting precise decimal-valued criteria significance weights. More
often, the decision problem will involve more or less equally important decision objectives
with more or less equi-significant criteria. A random example of such a decision problem
may be generated with the Random3ObjectivesPerformanceTableau class.

Listing 1.1: Random 3 Objectives Performance Tableau

1 >>> from randomPerfTabs import \

2 ... Random3ObjectivesPerformanceTableau

3

4 >>> t = Random3ObjectivesPerformanceTableau(

5 ... numberOfActions=7,

6 ... numberOfCriteria=9,seed=102)

7

8 >>> t

9 *------- PerformanceTableau instance description ------*

10 Instance class : Random3ObjectivesPerformanceTableau

11 Seed : 102

12 Instance name : random3ObjectivesPerfTab

13 # Actions : 7

(continues on next page)

17

(continued from previous page)

14 # Objectives : 3

15 # Criteria : 9

16 Attributes : ['name', 'valueDigits', 'BigData', 'OrdinalScales',

17 'missingDataProbability', 'negativeWeightProbability

→˓',

18 'randomSeed', 'sumWeights', 'valuationPrecision',

19 'commonScale', 'objectiveSupportingTypes', 'actions

→˓',

20 'objectives', 'criteriaWeightMode', 'criteria',

21 'evaluation', 'weightPreorder']

22 >>> t.showObjectives()

23 *------ show objectives -------"

24 Eco: Economical aspect

25 ec1 criterion of objective Eco 8

26 ec4 criterion of objective Eco 8

27 ec8 criterion of objective Eco 8

28 Total weight: 24.00 (3 criteria)

29 Soc: Societal aspect

30 so2 criterion of objective Soc 12

31 so7 criterion of objective Soc 12

32 Total weight: 24.00 (2 criteria)

33 Env: Environmental aspect

34 en3 criterion of objective Env 6

35 en5 criterion of objective Env 6

36 en6 criterion of objective Env 6

37 en9 criterion of objective Env 6

38 Total weight: 24.00 (4 criteria)

In this example (see Listing 1.1), we face seven decision alternatives that are assessed with
respect to three equally important decision objectives concerning: first, an economical
aspect (Line 24) with a coalition of three performance criteria of significance weight
8, secondly, a societal aspect (Line 29) with a coalition of two performance criteria of
significance weight 12, and thirdly, an environmental aspect (Line 33) with a coalition
four performance criteria of significance weight 6.

The question we tackle is the following: How dependent on the actual values of the
significance weights appears the corresponding bipolar-valued outranking digraph ? In the
previous section, we assumed that the criteria significance weights were random variables.
Here, we shall assume that we know for sure only the preordering of the significance
weights. In our example we see indeed three increasing weight equivalence classes (Listing
1.2).

Listing 1.2: Significance weights preorder

1 >>> t.showWeightPreorder()

2 ['en3', 'en5', 'en6', 'en9'] (6) <

3 ['ec1', 'ec4', 'ec8'] (8) <

(continues on next page)

18

(continued from previous page)

4 ['so2', 'so7'] (12)

How stable appear now the outranking situations when assuming only ordinal significance
weights?

Qualifying the stability of outranking situations

Let us construct the normalized bipolar-valued outranking digraph corresponding with
the previous 3 Objectives performance tableau t.

Listing 1.3: Example Bipolar Outranking Digraph

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> g = BipolarOutrankingDigraph(t,Normalized=True)

3 >>> g.showRelationTable()

4 * ---- Relation Table -----

5 r(>=) | 'p1' 'p2' 'p3' 'p4' 'p5' 'p6' 'p7'

6 ------|--

7 'p1' | +1.00 -0.42 +0.00 -0.69 +0.39 +0.11 -0.06

8 'p2' | +0.58 +1.00 +0.83 +0.00 +0.58 +0.58 +0.58

9 'p3' | +0.25 -0.33 +1.00 +0.00 +0.50 +1.00 +0.25

10 'p4' | +0.78 +0.00 +0.61 +1.00 +1.00 +1.00 +0.67

11 'p5' | -0.11 -0.50 -0.25 -0.89 +1.00 +0.11 -0.14

12 'p6' | +0.22 -0.42 +0.00 -1.00 +0.17 +1.00 -0.11

13 'p7' | +0.22 -0.50 +0.17 -0.06 +0.78 +0.42 +1.00

We notice on the principal diagonal, the certainly validated reflexive terms +1.00 (see
Listing 1.3 Lines 7-13). Now, we know for sure that unanimous outranking situations are
completely independent of the significance weights. Similarly, all outranking situations
that are supported by a majority significance in each coalition of equi-significant criteria
are also in fact independent of the actual importance we attach to each individual criteria
coalition. But we are also able to test (see [BIS-2014p]) if an outranking situation is
independent of all the potential significance weights that respect the given preordering of
the weights. Mind that there are, for sure, always outranking situations that are indeed
dependent on the very values we allocate to the criteria significance weights.

Such a stability denotation of outranking situations is readily available with the common
showRelationTable() method.

Listing 1.4: Relation Table with Stability Denotation

1 >>> g.showRelationTable(StabilityDenotation=True)

2 * ---- Relation Table -----

3 r/(stab) | 'p1' 'p2' 'p3' 'p4' 'p5' 'p6' 'p7'

4 ----------|--

5 'p1' | +1.00 -0.42 +0.00 -0.69 +0.39 +0.11 -0.06

6 | (+4) (-2) (+0) (-3) (+2) (+2) (-1)

(continues on next page)

19

(continued from previous page)

7 'p2' | +0.58 +1.00 +0.83 0.00 +0.58 +0.58 +0.58

8 | (+2) (+4) (+3) (+2) (+2) (+2) (+2)

9 'p3' | +0.25 -0.33 +1.00 0.00 +0.50 +1.00 +0.25

10 | (+2) (-2) (+4) (0) (+2) (+2) (+1)

11 'p4' | +0.78 0.00 +0.61 +1.00 +1.00 +1.00 +0.67

12 | (+3) (-1) (+3) (+4) (+4) (+4) (+2)

13 'p5' | -0.11 -0.50 -0.25 -0.89 +1.00 +0.11 -0.14

14 | (-2) (-2) (-2) (-3) (+4) (+2) (-2)

15 'p6' | +0.22 -0.42 0.00 -1.00 +0.17 +1.00 -0.11

16 | (+2) (-2) (+1) (-2) (+2) (+4) (-2)

17 'p7' | +0.22 -0.50 +0.17 -0.06 +0.78 +0.42 +1.00

18 | (+2) (-2) (+1) (-1) (+3) (+2) (+4)

We may thus distinguish the following bipolar-valued stability levels:

� +4 | -4 : unanimous outranking | outranked situation. The pairwise trivial
reflexive outrankings, for instance, all show this stability level;

� +3 | -3 : validated outranking | outranked situation in each coalition of equi-
significant criteria. This is, for instance, the case for the outranking situation
observed between alternatives p1 and p4 (see Listing 1.4 Lines 6 and 12);

� +2 | -2 : outranking | outranked situation validated with all potential sig-
nificance weights that are compatible with the given significance preorder (see
Listing 1.2. This is case for the comparison of alternatives p1 and p2 (see
Listing 1.4 Lines 6 and 8);

� +1 | -1 : validated outranking | outranked situation with the given signifi-
cance weights, a situation we may observe between alternatives p3 and p7 (see
Listing 1.4 Lines 10 and 16);

� 0 : indeterminate relational situation, like the one between alternatives p1
and p3 (see Listing 1.4 Lines 6 and 10).

It is worthwhile noticing that, in the one limit case where all performance criteria appear
equi-significant, i.e. there is given a single equivalence class containing all the performance
criteria, we may only distinguish stability levels +4 and +3 (rep. -4 and -3). Furthermore,
when in such a case an outranking (resp. outranked) situation is validated at level +3
(resp. -3), no potential preordering of the criteria significance weights exists that could
qualify the same situation as outranked (resp. outranking) at level -2 (resp. +2).

In the other limit case, when all performance criteria admit different significance weights,
i.e. the significance weights may be linearly ordered, no stability level +3 or -3 may be
observed.

As mentioned above, all reflexive comparisons confirm an unanimous outranking situa-
tion: all decision alternatives are indeed trivially as well performing as themselves. But
there appear also two non reflexive unanimous outranking situations: when comparing,
for instance, alternative p4 with alternatives p5 and p6 (see Listing 1.4 Lines 14 and 16).

Let us inspect the details of how alternatives p4 and p5 compare.

20

Listing 1.5: Comparing Decision Alternatives a4 and a5

1 >>> g.showPairwiseComparison('p4','p5')

2 *------------ pairwise comparison ----*

3 Comparing actions : (p4, p5)

4 crit. wght. g(x) g(y) diff | ind pref r() |

5 ec1 8.00 85.19 46.75 +38.44 | 5.00 10.00 +8.00 |

6 ec4 8.00 72.26 8.96 +63.30 | 5.00 10.00 +8.00 |

7 ec8 8.00 44.62 35.91 +8.71 | 5.00 10.00 +8.00 |

8 en3 6.00 80.81 31.05 +49.76 | 5.00 10.00 +6.00 |

9 en5 6.00 49.69 29.52 +20.17 | 5.00 10.00 +6.00 |

10 en6 6.00 66.21 31.22 +34.99 | 5.00 10.00 +6.00 |

11 en9 6.00 50.92 9.83 +41.09 | 5.00 10.00 +6.00 |

12 so2 12.00 49.05 12.36 +36.69 | 5.00 10.00 +12.00 |

13 so7 12.00 55.57 44.92 +10.65 | 5.00 10.00 +12.00 |

14 Valuation in range: -72.00 to +72.00; global concordance: +72.00

Alternative p4 is indeed performing unanimously at least as well as alternative p5 : r(p4
outranks p5) = +1.00 (see Listing 1.4 Line 11).

The converse comparison does not, however, deliver such an unanimous outranked situ-
ation. This comparison only qualifies at stability level -3 (see Listing 1.4 Line 13 r(p5
outranks p4) = 0.89).

Listing 1.6: Comparing Decision Alternatives p5 and p4

1 >>> g.showPairwiseComparison('p5','p4')

2 *------------ pairwise comparison ----*

3 Comparing actions : (p5, p4)

4 crit. wght. g(x) g(y) diff | ind pref r() |

5 ec1 8.00 46.75 85.19 -38.44 | 5.00 10.00 -8.00 |

6 ec4 8.00 8.96 72.26 -63.30 | 5.00 10.00 -8.00 |

7 ec8 8.00 35.91 44.62 -8.71 | 5.00 10.00 +0.00 |

8 en3 6.00 31.05 80.81 -49.76 | 5.00 10.00 -6.00 |

9 en5 6.00 29.52 49.69 -20.17 | 5.00 10.00 -6.00 |

10 en6 6.00 31.22 66.21 -34.99 | 5.00 10.00 -6.00 |

11 en9 6.00 9.83 50.92 -41.09 | 5.00 10.00 -6.00 |

12 so2 12.00 12.36 49.05 -36.69 | 5.00 10.00 -12.00 |

13 so7 12.00 44.92 55.57 -10.65 | 5.00 10.00 -12.00 |

14 Valuation in range: -72.00 to +72.00; global concordance: -64.00

Indeed, on criterion ec8 we observe a small negative performance difference of -8.71 (see
Listing 1.6 Line 7) which is effectively below the supposed preference discrimination
threshold of 10.00. Yet, the outranked situation is supported by a majority of crite-
ria in each decision objective. Hence, the reported preferential situation is completely
independent of any chosen significance weights.

Let us now consider a comparison, like the one between alternatives p2 and p1, that is
only qualified at stability level +2, resp. -2.

21

Listing 1.7: Comparing Decision Alternatives p2 and p1

1 >>> g.showPairwiseOutrankings('p2','p1')

2 *------------ pairwise comparison ----*

3 Comparing actions : (p2, p1)

4 crit. wght. g(x) g(y) diff | ind pref r() |

5 ec1 8.00 89.77 38.11 +51.66 | 5.00 10.00 +8.00 |

6 ec4 8.00 86.00 22.65 +63.35 | 5.00 10.00 +8.00 |

7 ec8 8.00 89.43 77.02 +12.41 | 5.00 10.00 +8.00 |

8 en3 6.00 20.79 58.16 -37.37 | 5.00 10.00 -6.00 |

9 en5 6.00 23.83 31.40 -7.57 | 5.00 10.00 +0.00 |

10 en6 6.00 18.66 11.41 +7.25 | 5.00 10.00 +6.00 |

11 en9 6.00 26.65 44.37 -17.72 | 5.00 10.00 -6.00 |

12 so2 12.00 89.12 22.43 +66.69 | 5.00 10.00 +12.00 |

13 so7 12.00 84.73 28.41 +56.32 | 5.00 10.00 +12.00 |

14 Valuation in range: -72.00 to +72.00; global concordance: +42.00

15 *------------ pairwise comparison ----*

16 Comparing actions : (p1, p2)

17 crit. wght. g(x) g(y) diff | ind pref r() |

18 ec1 8.00 38.11 89.77 -51.66 | 5.00 10.00 -8.00 |

19 ec4 8.00 22.65 86.00 -63.35 | 5.00 10.00 -8.00 |

20 ec8 8.00 77.02 89.43 -12.41 | 5.00 10.00 -8.00 |

21 en3 6.00 58.16 20.79 +37.37 | 5.00 10.00 +6.00 |

22 en5 6.00 31.40 23.83 +7.57 | 5.00 10.00 +6.00 |

23 en6 6.00 11.41 18.66 -7.25 | 5.00 10.00 +0.00 |

24 en9 6.00 44.37 26.65 +17.72 | 5.00 10.00 +6.00 |

25 so2 12.00 22.43 89.12 -66.69 | 5.00 10.00 -12.00 |

26 so7 12.00 28.41 84.73 -56.32 | 5.00 10.00 -12.00 |

27 Valuation in range: -72.00 to +72.00; global concordance: -30.00

In both comparisons, the performances observed with respect to the environmental de-
cision objective are not validating with a significant majority the otherwise unanimous
outranking, resp. outranked situations. Hence, the stability of the reported preferential
situations is in fact dependent on choosing significance weights that are compatible with
the given significance weights preorder (see Significance weights preorder (page 18)).

Let us finally inspect a comparison that is only qualified at stability level +1, like the
one between alternatives p7 and p3 (see Listing 1.8).

Listing 1.8: Comparing Decision Alternatives p7 and p3

1 >>> g.showPairwiseOutrankings('p7','p3')

2 *------------ pairwise comparison ----*

3 Comparing actions : (p7, p3)

4 crit. wght. g(x) g(y) diff | ind pref r() |

5 ec1 8.00 15.33 80.19 -64.86 | 5.00 10.00 -8.00 |

6 ec4 8.00 36.31 68.70 -32.39 | 5.00 10.00 -8.00 |

7 ec8 8.00 38.31 91.94 -53.63 | 5.00 10.00 -8.00 |
(continues on next page)

22

(continued from previous page)

8 en3 6.00 30.70 46.78 -16.08 | 5.00 10.00 -6.00 |

9 en5 6.00 35.52 27.25 +8.27 | 5.00 10.00 +6.00 |

10 en6 6.00 69.71 1.65 +68.06 | 5.00 10.00 +6.00 |

11 en9 6.00 13.10 14.85 -1.75 | 5.00 10.00 +6.00 |

12 so2 12.00 68.06 58.85 +9.21 | 5.00 10.00 +12.00 |

13 so7 12.00 58.45 15.49 +42.96 | 5.00 10.00 +12.00 |

14 Valuation in range: -72.00 to +72.00; global concordance: +12.00

15 *------------ pairwise comparison ----*

16 Comparing actions : (p3, p7)

17 crit. wght. g(x) g(y) diff | ind pref r() |

18 ec1 8.00 80.19 15.33 +64.86 | 5.00 10.00 +8.00 |

19 ec4 8.00 68.70 36.31 +32.39 | 5.00 10.00 +8.00 |

20 ec8 8.00 91.94 38.31 +53.63 | 5.00 10.00 +8.00 |

21 en3 6.00 46.78 30.70 +16.08 | 5.00 10.00 +6.00 |

22 en5 6.00 27.25 35.52 -8.27 | 5.00 10.00 +0.00 |

23 en6 6.00 1.65 69.71 -68.06 | 5.00 10.00 -6.00 |

24 en9 6.00 14.85 13.10 +1.75 | 5.00 10.00 +6.00 |

25 so2 12.00 58.85 68.06 -9.21 | 5.00 10.00 +0.00 |

26 so7 12.00 15.49 58.45 -42.96 | 5.00 10.00 -12.00 |

27 Valuation in range: -72.00 to +72.00; global concordance: +18.00

In both cases, choosing significance weights that are just compatible with the given
weights preorder will not always result in positively validated outranking situations.

Computing the stability denotation of outranking situations

Stability levels 4 and 3 are easy to detect, the case given. Detecting a stability level 2
is far less obvious. Now, it is precisely again the bipolar-valued epistemic characteristic
domain that will give us a way to implement an effective test for stability level +2 and
-2 (see [BIS-2004_1p], [BIS-2004_2p]).

Let us consider the significance equivalence classes we observe in the given weights pre-
order. Here we observe three classes: 6, 8, and 12, in increasing order (see Listing 1.2).
In the pairwise comparisons shown above these equivalence classes may appear positively
or negatively, besides the indeterminate significance of value 0. We thus get the following
ordered bipolar list of significance weights:

W = [-12. -8. -6, 0, 6, 8, 12].

In all the pairwise marginal comparisons shown in the previous Section, we may observe
that each one of the nine criteria assigns one precise item out of this listW. Let us denote
q[i] the number of criteria assigning item W[i], and Q[i] the cumulative sums of these
q[i] counts, where i is an index in the range of the length of list W.

In the comparison of alternatives a2 and a1, for instance (see Listing 1.7), we observe
the following counts:

23

W[i] -12 -8 -6 0 6 8 12

q[i] 0 0 2 1 1 3 2
Q[i] 0 0 2 3 4 7 9

Let use denote -q and -Q the reversed versions of the q and the Q lists. We thus obtain
the following result.

W[i] -12 -8 -6 0 6 8 12

-q[i] 2 3 1 1 2 0 0
-Q[i] 2 5 6 7 9 9 9

Now, a pairwise outranking situation will be qualified at stability level +2, i.e. positively
validated with any significance weights that are compatible with the given weights pre-
order, when for all i, we observe Q[i] <= -Q[i] and there exists one i such that Q[i]
< -Q[i]. Similarly, a pairwise outranked situation will be qualified at stability level -2,
when for all i, we observe Q[i] >= -Q[i] and there exists one i such that Q[i] > -Q[i]
(see [BIS-2004_2p]).

We may verify, for instance, that the outranking situation observed between a2 and a1
does indeed verify this first order distributional dominance condition.

W[i] -12 -8 -6 0 6 8 12

Q[i] 0 0 2 3 4 7 9
-Q[i] 2 5 6 7 9 9 9

Notice that outranking situations qualified at stability levels 4 and 3, evidently also verify
the stability level 2 test above. The outranking situation between alternatives a7 and a3
does not, however, verify this test (see Listing 1.8).

W[i] -12 -8 -6 0 6 8 12

q[i] 0 3 1 0 3 0 2
Q[i] 0 3 4 4 7 7 9
-Q[i] 2 2 5 5 6 9 9

This time, not all the Q[i] are lower or equal than the corresponding -Q[i] terms. Hence
the outranking situation between a7 and a3 is not positively validated with all potential
significance weights that are compatible with the given weights preorder.

Using this stability denotation, we may, hence, define the following robust version of a
bipolar-valued outranking digraph.

24

Robust bipolar-valued outranking digraphs

We say that decision alternative x robustly outranks decision alternative y when

� x positively outranks y at stability level higher or equal to 2 and we may not observe
any considerable counter-performance of x on a discordant criterion.

Dually, we say that decision alternative x does not robustly outrank decision alter-
native y when

� x negatively outranks y at stability level lower or equal to -2 and we may not
observe any considerable better performance of x on a discordant criterion.

The corresponding robust outranking digraph may be computed with the
RobustOutrankingDigraph class as follows.

Listing 1.9: Robust outranking digraph

1 >>> from outrankingDigraphs import RobustOutrankingDigraph

2 >>> rg = RobustOutrankingDigraph(t) # same t as before

3 >>> rg

4 *------- Object instance description ------*

5 Instance class : RobustOutrankingDigraph

6 Instance name : robust_random3ObjectivesPerfTab

7 # Actions : 7

8 # Criteria : 9

9 Size : 22

10 Determinateness (%) : 68.45

11 Valuation domain : [-1.00;1.00]

12 Attributes : ['name', 'methodData', 'actions', 'order',

13 'criteria', 'evaluation', 'vetos',

14 'valuationdomain', 'cardinalRelation',

15 'ordinalRelation', 'equisignificantRelation',

16 'unanimousRelation', 'relation',

17 'gamma', 'notGamma']

18 >>> rg.showRelationTable(StabilityDenotation=True)

19 * ---- Relation Table -----

20 r/(stab) | 'p1' 'p2' 'p3' 'p4' 'p5' 'p6' 'p7'

21 ---------|--

22 'p1' | +1.00 -0.42 +0.00 -0.69 +0.39 +0.11 +0.00

23 | (+4) (-2) (+0) (-3) (+2) (+2) (-1)

24 'p2' | +0.58 +1.00 +0.83 +0.00 +0.58 +0.58 +0.58

25 | (+2) (+4) (+3) (+2) (+2) (+2) (+2)

26 'p3' | +0.25 -0.33 +1.00 +0.00 +0.50 +1.00 +0.00

27 | (+2) (-2) (+4) (+0) (+2) (+2) (+1)

28 'p4' | +0.78 +0.00 +0.61 +1.00 +1.00 +1.00 +0.67

29 | (+3) (-1) (+3) (+4) (+4) (+4) (+2)

30 'p5' | -0.11 -0.50 -0.25 -0.89 +1.00 +0.11 -0.14

31 | (-2) (-2) (-2) (-3) (+4) (+2) (-2)

32 'p6' | +0.22 -0.42 +0.00 -1.00 +0.17 +1.00 -0.11
(continues on next page)

25

(continued from previous page)

33 | (+2) (-2) (+1) (-2) (+2) (+4) (-2)

34 'p7' | +0.22 -0.50 +0.00 +0.00 +0.78 +0.42 +1.00

35 | (+2) (-2) (+1) (-1) (+3) (+2) (+4)

We may notice that all outranking situations, qualified at stability level +1 or -1, are
now put to an indeterminate status. In the example here, we actually drop three positive
outrankings: between p3 and p7, between p7 and p3, and between p6 and p3, where the
last situation is actually already put to doubt by a veto situation (see Listing 1.9 Lines
22-35). We drop as well three negative outrankings: between p1 and p7, between p4 and
p2, and between p7 and p4 (see Listing 1.9 Lines 22-35).

Notice by the way that outranking (resp. outranked) situations, although qualified at level
+2 or +3 (resp. -2 or -3) may nevertheless be put to doubt by considerable performance
differences. We may observe such an outranking situation when comparing, for instance,
alternatives p2 and p4 (see Listing 1.9 Lines 24-25).

Listing 1.10: Comparing alternatives p2 and p4

1 >>> rg.showPairwiseComparison('p2','p4')

2 *------------ pairwise comparison ----*

3 Comparing actions : (p2, p4)

4 crit. wght. g(x) g(y) diff | ind pref r() | v ␣

→˓veto

5 --

→˓-

6 ec1 8.00 89.77 85.19 +4.58 | 5.00 10.00 +8.00 |

7 ec4 8.00 86.00 72.26 +13.74 | 5.00 10.00 +8.00 |

8 ec8 8.00 89.43 44.62 +44.81 | 5.00 10.00 +8.00 |

9 en3 6.00 20.79 80.81 -60.02 | 5.00 10.00 -6.00 | 60.00 -1.

→˓00

10 en5 6.00 23.83 49.69 -25.86 | 5.00 10.00 -6.00 |

11 en6 6.00 18.66 66.21 -47.55 | 5.00 10.00 -6.00 |

12 en9 6.00 26.65 50.92 -24.27 | 5.00 10.00 -6.00 |

13 so2 12.00 89.12 49.05 +40.07 | 5.00 10.00 +12.00 |

14 so7 12.00 84.73 55.57 +29.16 | 5.00 10.00 +12.00 |

15 Valuation in range: -72.00 to +72.00; global concordance: +24.00

Despite being robust, the apparent positive outranking situation between alternatives p2
and p4 is indeed put to doubt by a considerable counter-performance (-60.02) of p2 on
criterion en3, a negative difference which exceeds slightly the assumed veto discrimination
threshold v = 60.00 (see Listing 1.10 Line 9).

We may finally compare in Fig. 1.10 the standard and the robust version of the corre-
sponding strict outranking digraphs, both oriented by their respective identical initial
and terminal prekernels.

26

Fig. 1.10: Standard versus robust strict outranking digraphs oriented by their initial and
terminal prekernels

The robust version drops two strict outranking situations: between p4 and p7 and be-
tween p7 and p1. The remaining 14 strict outranking (resp. outranked) situations are
now all verified at a stability level of +2 and more (resp. -2 and less). They are, hence,
only depending on potential significance weights that must respect the given significance
preorder (see Listing 1.2).

To appreciate the apparent orientation of the standard and robust strict outranking di-
graphs shown in Fig. 1.10, let us have a final heat map view on the underlying performance
tableau ordered by the NetFlows ranking rule.

>>> t.showHTMLPerformanceHeatmap(Correlations=True,

... rankingRule='NetFlows')

27

Fig. 1.11: Heat map of the random 3 objectives performance tableau ordered by the
NetFlows ranking rule

As the inital prekernel is here validated at stability level +2, recommending alternatives
p4, as well as p2, as potential first choices, appears well justified. Alternative a4 repre-
sents indeed an overall best compromise choice between all decision objectives, whereas
alternative p2 gives an unanimous best choice with respect to two out of three decision
objectives. Up to the decision maker to make his final choice.

For concluding, let us mention that it is precisely again our bipolar-valued logical charac-
teristic framework that provides us here with a first order distributional dominance
test for effectively qualifying the stability level 2 robustness of an outranking digraph when
facing performance tableaux with criteria of only ordinal-valued significance weights. A
real world application of our stability analysis with such a kind of performance tableau
may be consulted in [BIS-2015p].

Back to Content Table (page 1)

1.4 On unopposed outrankings with multiple decision objectives

� Characterising unopposed multiobjective outranking situations (page 29)

� Computing unopposed multiobjective choice recommendations (page 32)

When facing a performance tableau involving multiple decision objectives, the robustness
level +/-3, introduced in the previous Section, may lead to distinguishing what we call
unopposed outranking situations, like the one shown between alternative p4 and p1
(𝑟(𝑝4 ≿ 𝑝1) = +0.78, see Listing 1.4 Line11), namely preferential situations that are
more or less validated or invalidated by all the decision objectives.

28

Characterising unopposed multiobjective outranking situations

Formally, we say that decision alternative x outranks decision alternative y unopposed
when

� x positively outranks y on one or more decision objective without x being positively
outranked by y on any decision objective.

Dually, we say that decision alternative x does not outrank decision alternative y
unopposed when

� x is positively outranked by y on one or more decision objective without x outrank-
ing y on any decision objective.

Let us reconsider, for instance, the previous performance tableau with three decision
objectives (see Listing 1.1):

Listing 1.11: Performance tableau with three decision
objectives

1 >>> from randomPerfTabs import\

2 ... Random3ObjectivesPerformanceTableau

3

4 >>> t = Random3ObjectivesPerformanceTableau(

5 ... numberOfActions=7,

6 ... numberOfCriteria=9,seed=102)

7

8 >>> t.showObjectives()

9 *------ show objectives -------"

10 Eco: Economical aspect

11 ec1 criterion of objective Eco 8

12 ec4 criterion of objective Eco 8

13 ec8 criterion of objective Eco 8

14 Total weight: 24.00 (3 criteria)

15 Soc: Societal aspect

16 so2 criterion of objective Soc 12

17 so7 criterion of objective Soc 12

18 Total weight: 24.00 (2 criteria)

19 Env: Environmental aspect

20 en3 criterion of objective Env 6

21 en5 criterion of objective Env 6

22 en6 criterion of objective Env 6

23 en9 criterion of objective Env 6

24 Total weight: 24.00 (4 criteria)

We notice in this example three decision objectives of equal importance (see Listing
1.11 Lines 10,15,19). What will be the outranking situations that are positively (resp.
negatively) validated for each one of the decision objectives taken individually ?

We may obtain such unopposed multiobjective outranking situations by operating an
epistemic o-average fusion (see the ~digraphsTools.symmetricAverage method) of

29

the marginal outranking digraphs restricted to the coalition of criteria supporting each
one of the decision objectives (see Listing 1.12 below).

Listing 1.12: Computing unopposed outranking situa-
tions

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> geco = BipolarOutrankingDigraph(t,objectivesSubset=['Eco'])

3 >>> gsoc = BipolarOutrankingDigraph(t,objectivesSubset=['Soc'])

4 >>> genv = BipolarOutrankingDigraph(t,objectivesSubset=['Env'])

5 >>> from digraphs import FusionLDigraph

6 >>> objectiveWeights = \

7 ... [t.objectives[obj]['weight'] for obj in t.objectives]

8

9 >>> uopg = FusionLDigraph([geco,gsoc,genv],

10 ... operator='o-average',

11 ... weights=objectiveWeights)

12

13 >>> uopg.showRelationTable(ReflexiveTerms=False)

14 * ---- Relation Table -----

15 r | 'p1' 'p2' 'p3' 'p4' 'p5' 'p6' 'p7'

16 -----|--

17 'p1' | - +0.00 +0.00 -0.69 +0.39 +0.11 +0.00

18 'p2' | +0.00 - +0.83 +0.00 +0.00 +0.00 +0.00

19 'p3' | +0.00 -0.33 - +0.00 +0.50 +0.00 +0.00

20 'p4' | +0.78 +0.00 +0.61 - +1.00 +1.00 +0.67

21 'p5' | -0.11 +0.00 +0.00 -0.89 - +0.11 +0.00

22 'p6' | +0.00 +0.00 +0.00 -0.44 +0.17 - +0.00

23 'p7' | +0.00 +0.00 +0.00 +0.00 +0.78 +0.42 -

24 Valuation domain: [-1.000; 1.000]

Positive (resp. negative) 𝑟(𝑥 ≿ 𝑦) characteristic values, like 𝑟(𝑝1 ≿ 𝑝5) = 0.39 (see Listing
1.12 Line 17), show hence only outranking situations being validated (resp. invalidated)
by one or more decision objectives without being invalidated (resp. validated) by any
other decision objective.

For easily computing this kind of unopposed multiobjective outranking di-
graphs, the outrankingDigraphs module conveniently provides a corresponding
UnOpposedBipolarOutrankingDigraph constructor.

Listing 1.13: Unopposed outranking digraph constructor

1 >>> from outrankingDigraphs import\

2 ... UnOpposedBipolarOutrankingDigraph

3

4 >>> uopg = UnOpposedBipolarOutrankingDigraph(t)

5 >>> uopg

6 *------- Object instance description ------*

7 Instance class : UnOpposedBipolarOutrankingDigraph

(continues on next page)

30

(continued from previous page)

8 Instance name : unopposed_outrankings

9 # Actions : 7

10 # Criteria : 9

11 Size : 13

12 Oppositeness (%) : 43.48

13 Determinateness (%) : 61.71

14 Valuation domain : [-1.00;1.00]

15 Attributes : ['name', 'actions', 'valuationdomain', 'objectives

→˓',

16 'criteria', 'methodData', 'evaluation', 'order',

17 'runTimes', 'relation',

→˓'marginalRelationsRelations',

18 'gamma', 'notGamma']

19 >>> uopg.computeOppositeness(InPercents=True)

20 {'standardSize': 23, 'unopposedSize': 13,

21 'oppositeness': 43.47826086956522}

The resulting unopposed outranking digraph keeps in fact 13 (see Listing 1.13 Lines 12-13)
out of the 23 positively validated standard outranking situations, leading to a degree of
oppositeness -preferential disagreement between decision objectives- of (1.0−13/23) =
0.4348.

We may now, for instance, verify the unopposed status of the outranking situation ob-
served between alternatives p1 and p5.

Listing 1.14: Example of unopposed multiobjective out-
ranking situation

1 >>> uopg.showPairwiseComparison('p1','p5')

2 *------------ pairwise comparison ----*

3 Comparing actions : (p1, p5)

4 crit. wght. g(x) g(y) diff | ind pref r() |

5 ec1 8.00 38.11 46.75 -8.64 | 5.00 10.00 +0.00 |

6 ec4 8.00 22.65 8.96 +13.69 | 5.00 10.00 +8.00 |

7 ec8 8.00 77.02 35.91 +41.11 | 5.00 10.00 +8.00 |

8 en3 6.00 58.16 31.05 +27.11 | 5.00 10.00 +6.00 |

9 en5 6.00 31.40 29.52 +1.88 | 5.00 10.00 +6.00 |

10 en6 6.00 11.41 31.22 -19.81 | 5.00 10.00 -6.00 |

11 en9 6.00 44.37 9.83 +34.54 | 5.00 10.00 +6.00 |

12 so2 12.00 22.43 12.36 +10.07 | 5.00 10.00 +12.00 |

13 so7 12.00 28.41 44.92 -16.51 | 5.00 10.00 -12.00 |

14 Valuation in range: -72.00 to +72.00; global concordance: +28.00

In Listing 1.14 we see that alternative p1 does indeed positively outrank alternative p5
from the economic perspective (𝑟(𝑝1 ≿𝐸𝑐𝑜 𝑝5) = +16/24) as well as from the environ-
mental perspective (𝑟(𝑝1 ≿𝐸𝑛𝑣 𝑝5) = +12/24). Whereas, from the societal perspective,
both alternatives appear incomparable (𝑟(𝑝1 ≿𝑆𝑜𝑐 𝑝5) = 0/24).

31

When fixed proportional criteria significance weights per objective are given, these out-
ranking situations appear hence stable with respect to all possible importance weights
we could allocate to the decision objectives.

This gives way for computing multiobjective choice recommendations.

Computing unopposed multiobjective choice recommendations

Indeed, best choice recommendations, computed from an unopposed multiobjective out-
ranking digraph, will in fact deliver efficient choice recommendations.

Listing 1.15: Efficient multiobjective choice recommen-
dation

1 >>> uopg.showBestChoiceRecommendation()

2 Best choice recommendation(s) (BCR)

3 (in decreasing order of determinateness)

4 Credibility domain: [-1.00,1.00]

5 === >> potential first choice(s)

6 choice : ['p2', 'p4', 'p7']

7 independence : 0.00

8 dominance : 0.33

9 absorbency : 0.00

10 covering (%) : 33.33

11 determinateness (%) : 50.00

12 === >> potential last choice(s)

13 choice : ['p3', 'p5', 'p6', 'p7']

14 independence : 0.00

15 dominance : -0.61

16 absorbency : 0.11

17 covered (%) : 33.33

18 determinateness (%) : 50.00

Our previous robust best choice recommendation (p2 and p4, see Fig. 1.10) remains, in
this example here, stable. We recover indeed the best choice recommendation [‘p2’, ‘p4’,
‘p7’] (see Listing 1.15 Line 6). Yet, notice that decision alternative p7 appears to be at
the same time a potential first as well as a potential last choice recommendation (see Line
13), a consequence of p7 being completely incomparable to the other decision alternatives
when restricting the comparability to only unopposed strict outranking situations.

We may visualize this kind of efficient choice recommendation in Fig. 1.12 below.

1 >>> (~(-uopg)).exportGraphViz(fileName = 'unopDigraph',

2 ... firstChoice = ['p2', 'p4'],

3 ... lastChoice = ['p3', 'p5', 'p6'])

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to unopDigraph.dot

6 dot -Grankdir=BT -Tpng unopDigraph.dot -o unopDigraph.png

32

Fig. 1.12: Standard versus unopposed strict outranking digraphs oriented by first and
last choice recommendations

In order to make now an eventual best unique choice, a decision maker will necessarily
have to weight, in a second stage of the decision aiding process, the relative importance
of the individual decision objectives (see tutorial on computing a best choice recommen-
dation).

Back to Content Table (page 1)

2 Enhancing social choice procedures

“In order to meet both essential conditions for making [social] choices –the
probability to obtain a decision & the one that the decision may be correct– it
is required [. . .], in case of decisions on complicated questions, to thouroughly
develop the system of simple propositions that make them up, that every po-
tential opinion is well explained, that the opinion of each voter is collected on
each one of the propositions that make up each question & not only on the
global result.”

—Condorcet, Jean-Antoine-Nicolas de Caritat marquis de (1785)12

12 “Pour réunir les deux conditions essentielles à toute décision [publique], la probabilité d’avoir une

décision, & celle que la décision obtenue sera vraie, il faut [. . . .] dans le cas des décisions sur des questions
compliquées, faire en sorte que le système des propositions simples qui les forment soit rigoureusement

développé, que chaque avis possible soit bien exposé, que la voix de chaque Votant soit prise sur chacune

des propositions qui forment cet avis, & non sur le résultat seul.” [CON-1785p] P. lxix

33

� Condorcet’s critical perspective on the simple plurality voting rule (page 34)

� Two-stage elections with multipartisan primary selection (page 42)

� Tempering plurality tyranny effects with bipolar approval voting (page 51)

� Selecting the winner of a primary election: a critical commentary (page 65)

2.1 Condorcet’s critical perspective on the simple plurality voting

rule

� Bipolar approval voting of motions (page 34)

� Who wins the election? (page 36)

� Resolving circular social preferences (page 38)

� The Borda rank analysis method (page 41)

In his seminal 1785 critical perspective on simple plurality voting rules for solving social
choice problems, Condorcet developed several case studies for supporting his analysis. A
first case concerns the decision to be taken by a Committee on two motions ([CON-1785p]
P. xlvij).

Bipolar approval voting of motions

Suppose that an Assembly of 33 voters has to decide on two motions A and B. 11 voters
are in favour of both, 10 voters support A and reject B, 3 voters reject A and support
B, and 9 voters reject both. Following naively a simple plurality rule, the decision of the
Assembly would be to accept both motion A and motion B, as a plurality of 11 voters
apparently supports them both. Is this the correct social decision?

To investigate the question, we model the given preference data in the format of a
BipolarApprovalVotingProfile object. The corresponding content, shown in Listing
2.1, is contained in a file named condorcet1.py to be found in the examples directory of
the Digraph3 resources.

Listing 2.1: Bipolar approval-disapproval voting profile

1 # BipolarApprovalVotingProfile:

2 # Condorcet 1785, p. lviij

3 from collections import OrderedDict

4 candidates = OrderedDict([

5 ('A', {'name': 'A'}),

6 ('B', {'name': 'A'})])

7 voters = OrderedDict([

(continues on next page)

34

(continued from previous page)

8 ('v1', {'weight':11}),

9 ('v2', {'weight':10}),

10 ('v3', {'weight': 3}),

11 ('v4', {'weight': 9})])

12 approvalBallot = {

13 'v1': {'A': 1,'B': 1},

14 'v2': {'A': 1,'B': -1},

15 'v3': {'A': -1,'B': 1},

16 'v4': {'A': -1,'B': -1} }

We can inspect this data with the BipolarApprovalVotingProfile class, as shown in
Listing 2.2 Line 3 below.

Listing 2.2: Bipolar approval-disapproval voting profile

1 >>> from votingProfiles import\

2 ... BipolarApprovalVotingProfile

3 >>> v1 = BipolarApprovalVotingProfile('condorcet1')

4 >>> v1

5 *------- VotingProfile instance description ------*

6 Instance class : BipolarApprovalVotingProfile

7 Instance name : condorcet1

8 Candidates : 2

9 Voters : 4

10 Attributes : ['name', 'candidates', 'voters',

11 'approvalBallot', 'netApprovalScores', 'ballot']

12 >>> v1.showApprovalResults()

13 Approval results

14 Candidate: A obtains 21 votes

15 Candidate: B obtains 14 votes

16 Total approval votes: 35

17 >>> v1.showDisapprovalResults()

18 Disapproval results

19 Candidate: A obtains 12 votes

20 Candidate: B obtains 19 votes

21 Total disapproval votes: 31

22 >>> v1.showNetApprovalScores()

23 Net Approval Scores

24 Candidate: A obtains 9 net approvals

25 Candidate: B obtains -5 net approvals

Actually, a majority of 60% supports motion A (21/35, see Line 14) whereas a majority
of 54% rejects motion B (19/35, see Line 20). The simple plurality rule violates thus
clearly the voters actual preferences. The correct decision —accepting A and rejecting
B as promoted by Condorcet– is indeed correctly modelled by the net approval scores
obtained by both motions (see Lines 24-25).

A second example of incorrect simple plurality rule results, developed by Condorcet in

35

1785, concerns uninominal general elections ([CON-1785p] P. lviij)

Who wins the election?

Suppose an Assembly of 60 voters has to select a winner among three potential candidates
A, B, and C. 23 voters vote for A, 19 for B and 18 for C. Suppose furthermore that the
23 voters voting for A prefer C over B, the 19 voters voting for B prefer C over A and
among the 18 voters voting for C, 16 prefer B over A and only 2 prefer A over B.

We may organize this data in the format of the following LinearVotingProfile object.

Listing 2.3: Linear voting profile

1 from collections import OrderedDict

2 candidates = OrderedDict([

3 ('A', {'name': 'Candidate A'}),

4 ('B', {'name': 'Candidate B'}),

5 ('C', {'name': 'Candidate C'})])

6 voters = OrderedDict([

7 ('v1', {'weight':23}),

8 ('v2', {'weight':19}),

9 ('v3', {'weight':16}),

10 ('v4', {'weight':2})])

11 linearBallot = {

12 'v1': ['A','C','B'],

13 'v2': ['B','C','A'],

14 'v3': ['C','B','A'],

15 'v4': ['C','A','B'] }

With an uninominal plurality rule, it is candidate A who is elected. Is this decision
correctly reflecting the actual preference of the Assembly ?

The linear voting profile shown in Listing 2.3 is contained in a file named con-
dorcet2.py provided in the examples directory of the Digraph3 resources. With the
LinearVotingProfile class, this file may be inspected as follows.

Listing 2.4: Computing the winner

1 >>> from votingProfiles import\

2 ... LinearVotingProfile

3 >>> v2 = LinearVotingProfile('condorcet2')

4 >>> v2.showLinearBallots()

5 voters marginal

6 (weight) candidates rankings

7 v1(23): ['A', 'C', 'B']

8 v2(19): ['B', 'C', 'A']

9 v3(16): ['C', 'B', 'A']

10 v4(2): ['C', 'A', 'B']

11 Nbr of voters: 60.0
(continues on next page)

36

(continued from previous page)

12 >>> v2.computeUninominalVotes()

13 {'A': 23, 'B': 19, 'C': 18}

14 >>> v2.computeSimpleMajorityWinner()

15 ['A']

16 >>> v2.computeInstantRunoffWinner(Comments=True)

17 Total number of votes = 60.000

18 Half of the Votes = 30.00

19 ==> stage = 1

20 remaining candidates ['A', 'B', 'C']

21 uninominal votes {'A': 23, 'B': 19, 'C': 18}

22 minimal number of votes = 18

23 maximal number of votes = 23

24 candidate to remove = C

25 remaining candidates = ['A', 'B']

26 ==> stage = 2

27 remaining candidates ['A', 'B']

28 uninominal votes {'A': 25, 'B': 35}

29 minimal number of votes = 25

30 maximal number of votes = 35

31 candidate B obtains an absolute majority

32 ['B']

In ordinary elections, only the votes for first-ranked candidates are communicated and
counted, so that candidate A with a plurality of 23 votes would actually win the election.
As A does not obtain an absolute majority of votes (23/60 38.3%), it is often common
practice to organise a runoff voting. In this case, candidate C with the lowest uninominal
votes will be eliminated in the first stage (see Line 24). If the voters do not change their
preferences in between the election stages, candidate B eventually wins against A with
a 58.3% (35/60) majority of votes (see Line 31). Is candidate B now a more convincing
winner than candidate A ?

Disposing supposedly here of a complete linear voting profile, Condorcet, in order to
answer this question, recommends to compute an election result for all 6 pairwise com-
parisons of the candidates. This may be done with the MajorityMarginsDigraph class
constructor as shown in Listing 2.5.

Listing 2.5: Computing the Condorcet winner

1 >>> from votingProfiles import\

2 ... MajorityMarginsDigraph

3 >>> mm = MajorityMarginsDigraph(v2)

4 >>> mm.showMajorityMargins()

5 * ---- Relation Table -----

6 S | 'A' 'B' 'C'

7 ------|-----------------

8 'A' | 0 -10 -14

9 'B' | +10 0 -22

(continues on next page)

37

(continued from previous page)

10 'C' | +14 +22 0

11 Valuation domain: [-60;+60]

12 >>> mm.computeCondorcetWinners()

13 ['C']

In a pairwise competition, candidate C beats both candidate A with a majority of 61.5%
(37/60) as well as candidate B with a majority of 68.3% (41/60). Candidate C represents
in fact the absolute majority supported candidate. C is what we call now a Condorcet
Winner (see Lines 10 and 13 above).

Yet, is Condorcet ’s approach always a decisive social choice rule?

Resolving circular social preferences

Let us this time suppose that the 23 voters voting for A prefer B over C, that the 19
voters voting for B prefer C over A, and that the 18 voters voting for C actually prefer
A over B.

This resulting linear voting profile, as shown in Listing 2.6, is contained in a file named
condorcet3.py provided in the examples directory of the Digraph3 resources and may be
inspected as follows.

Listing 2.6: A circular linear voting profile

1 >>> from votingProfiles import\

2 ... LinearVotingProfile

3 >>> v3 = LinearVotingProfile('condorcet3')

4 >>> v3.showLinearBallots()

5 voters marginal

6 (weight) candidates rankings

7 v1(23): ['A', 'B', 'C']

8 v2(19): ['B', 'C', 'A']

9 v3(18): ['C', 'A', 'B']

10 Nbr of voters: 60.0

11 >>> v3.computeSimpleMajorityWinner()

12 ['A']

13 >>> v3.computeInstantRunoffWinner()

14 ['A']

15 >>> m3 = MajorityMarginsDigraph(v3)

16 >>> m3.showMajorityMargins()

17 *---- Relation Table -----

18 S | 'A' 'B' 'C'

19 ------|----------------

20 'A' | 0 +24 -22

21 'B' | -24 0 +14

22 'C' | +22 -14 0

23 Valuation domain: [-60;+60]

38

We may notice in Listing 2.6 Lines 7-9 that we thus circularly swap in each linear ranking
the first with the last candidate. This time, the majority margins do not show anymore a
Condorcet winner (see Lines 20-22) and the plurality supported social preferences appear
to be circular as illustrated in Fig. 2.1:

1 >>> m3.exportGraphViz('circularPreference')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to circularPreference.dot

4 dot -Grankdir=BT -Tpng circularPreference.dot\

5 -o circularPreference.png

Fig. 2.1: Circular majority margins

Condorcet did recognize this potential failure of the decisiveness of his approach and
proposed, in order to effectively solve such a circular decision problem, a kind of prudent
RankedPairs rule where a potential majority margins circuit is broken up at its weakest
margin. In this example, the weakest positive majority margin in the apparent circuit
–C > A > B > C– is the last one, characterising B > C (+14, see Listing 2.6 Line 21).

We may use the RankedPairsRanking class from the linearOrders module to apply
such a rule to our majority margins digraph m3 (see Listing 2.7).

39

Listing 2.7: Prudent ranked pairs rule based ranking

1 >>> from linearOrders import RankedPairsRanking

2 >>> rp = RankedPairsRanking(m3,Comments=True)

3 Starting the ranked pairs rule with the following partial order:

4 * ---- Relation Table -----

5 S | 'A' 'B' 'C'

6 ------|------------------

7 'A' | 0.00 0.00 0.00

8 'B' | 0.00 0.00 0.00

9 'C' | 0.00 0.00 0.00

10 Valuation domain: [-1.00;1.00]

11 (Decimal('48.0'), ('A', 'B'), 'A', 'B')

12 next pair: ('A', 'B') 24.0

13 added: (A,B) characteristic: 24.00 (1.0)

14 added: (B,A) characteristic: -24.00 (-1.0)

15 (Decimal('44.0'), ('C', 'A'), 'C', 'A')

16 next pair: ('C', 'A') 22.0

17 added: (C,A) characteristic: 22.00 (1.0)

18 added: (A,C) characteristic: -22.00 (-1.0)

19 (Decimal('28.0'), ('B', 'C'), 'B', 'C')

20 next pair: ('B', 'C') 14.0

21 Circuit detected !!

22 (Decimal('-28.0'), ('C', 'B'), 'C', 'B')

23 next pair: ('C', 'B') -14.0

24 added: (C,B) characteristic: -14.00 (1.0)

25 added: (B,C) characteristic: 14.00 (-1.0)

26 (Decimal('-44.0'), ('A', 'C'), 'A', 'C')

27 (Decimal('-48.0'), ('B', 'A'), 'B', 'A')

28 Ranked Pairs Ranking = ['C', 'A', 'B']

The RankedPairs rule drops indeed the B > C majority margin in favour of the converse
C > B situation (Lines 20-23) and delivers hence the linear ranking C > A > B (Line
28). And, it is eventually candidate C –neither the uninominal simple plurality candidate
nor the instant runoff winner (see Listing 2.6 Lines 11-14)– who is, despite the apparent
circular social preference, still winning this sample election game.

Condorcet ’s last example concerns the Borda rule. The Chevalier Jean-Charles de Borda,
geometer and French navy officer, contemporary colleague of Condorcet in the French
“Academie des Sciences” correctly contested already in 1784 the actual decisiveness of
Condorcet ’s pairwise majority margins approach when facing circular social preferences.
He proposed instead the now famous rank analysis method named after him17.

17 Borda (1733-1799) was an early and most active promoter of the introduction of an universal
metric measurement system. He even elaborated a metric angle measurement system but eventually
failed to convince his fellow geometers. See https://fr.wikipedia.org/wiki/Jean-Charles_de_Borda and
[BRI-2008p]

40

https://fr.wikipedia.org/wiki/Jean-Charles_de_Borda

The Borda rank analysis method

To defend his pairwise voting approach, Condorcet showed with a simple example that
the rank analysis method may give a Borda winner who eliminates a candidate who is in
fact supported by an absolute majority of voters18. He proposed therefore the following
example of a linear voting profile, stored in a file named condorcet4.py available in the
examples directory of the Digraph3 resources.

1 >>> from votingProfiles import LinearVotingProfile

2 >>> lv = LinearVotingProfile('condorcet4')

3 >>> lv.showLinearBallots()

4 voters marginal

5 (weight) candidates rankings

6 v1(30): ['A', 'B', 'C']

7 v2(1): ['A', 'C', 'B']

8 v3(10): ['C', 'A', 'B']

9 v4(29): ['B', 'A', 'C']

10 v5(10): ['B', 'C', 'A']

11 v6(1): ['C', 'B', 'A']

12 # voters: 81.0

13 >>> lv.computeUninominalVotes()

14 {'A': 31, 'B': 39, 'C': 11}

In this example, the simple uninominal plurality winner, with a plurality of 39 votes, is
Candidate B (see last Line above). When we apply now Borda’s rank analysis method
we will indeed confirm this Candidate B with the smallest Borda score –(39×1) + (31×
2) + (11× 3) = 134– as the actual Borda winner (see Line 6 below).

1 >>> lv.showRankAnalysisTable()

2 *---- Borda rank analysis tableau -----*

3 candi- | alternative-to-rank | Borda

4 dates | 1 2 3 | score average

5 -------|-------------------------------------

6 'B' | 39 31 11 | 134 1.65

7 'A' | 31 39 11 | 142 1.75

8 'C' | 11 11 59 | 210 2.59

However, if we compute the corresponding majority margins digraph, we get the following
result.

1 >>> from votingProfiles import MajorityMarginsDigraph

2 >>> mm = MajorityMarginsDigraph(lv)

3 >>> mm.showRelationTable()

4 * ---- Relation Table -----

5 S | 'A' 'B' 'C'

6 ------|----------------

7 'A' | 0 +1 +39
(continues on next page)

18 [CON-1785p] P. clxxvij

41

(continued from previous page)

8 'B' | -1 0 +57

9 'C' | -39 -57 0

10 Valuation domain: [-81;+81]

With solely positive pairwise majority margins, Candidate A beats in fact both the other
two candidates with an absolute majority of votes (see Line 7 above) and gives the
Condorcet winner. Candidate A is hence in this example a more convincing election
winner than the one that would result from Borda’s rank analysis method and from the
uninominal plurality rule.

Could different integer weights allocated to each rank position avoid such a failure of
Borda’s method? No, as convincingly shown by Condorcet with the help of this example.
Indeed, Candidate A is 8 times more often than Candidate B in the second rank position
(39 - 31), whereas Candidate B is 8 times more often than Candidate A in the first rank
position (39 - 31). On the third rank position they both obtain the same score 11 (see
Lines 6-7 in the rank analysis table above). As the weight of a first rank must in any case
be srictly lower than the weight of a second rank, there does not exist in this example any
possible weighing of the rank positions that would make Candidate A win over Candidate
B.

Condorcet did nonetheless aknowledge in his 1785 essay the actual merits of Borda and
his rank analysis approach which he qualifies as ingenious and easy to put into practice19.

Note: Mind that nearly 250 years after Condorcet, most of our modern election systems
are still relying either on uninominal plurality rules like the UK Parliament elections
or on multi-stage runoff rules like the two stage French presidential elections, which, as
convincingly shown by Condorcet already in 1785, risk very often to do not deliver correct
democratic decisions. No wonder that many of our modern democracies show difficulties
to make well accepted social choices.

Back to Content Table (page 1)

2.2 Two-stage elections with multipartisan primary selection

� Converting voting profiles into performance tableaux (page 43)

� Multipartisan primary selection of eligible candidates (page 45)

� Secondary election winner determination (page 47)

19 ” . . . j’ai cru devoir citer [Borda], 1. parce qu’il est le premier qui ait observé que la méthode

commune [simple pluralité uninominale] de faire des élections étoit défectueuse; 2. parce que celle qu’il

a proposé d’y substituer est très ingénieuse, quelle seroit très-simple dans la pratique . . . ” [CON-1785p]
P. clxxiX

42

� Multipartisan preferences in divisive politics (page 48)

In a social choice context, where decision objectives would match different political par-
ties, efficient multiobjective choice recommendations represent in factmultipartisan so-
cial choices that could judiciously deliver the primary selection in a two stage election
system.

To compute such efficient social choice recommendations we need to, first, convert a given
linear voting profile (with polls) into a corresponding performance tableau.

Converting voting profiles into performance tableaux

We shall illustrate this point with a voting profile we discuss in the tutorial on generating
random linear voting profiles.

Listing 2.8: Example of a 3 parties voting profile

1 >>> from votingProfiles import RandomLinearVotingProfile

2 >>> lvp = RandomLinearVotingProfile(numberOfCandidates=15,

3 ... numberOfVoters=1000,

4 ... WithPolls=True,

5 ... partyRepartition=0.5,

6 ... other=0.1,

7 ... seed=0.9189670954954139)

8

9 >>> lvp

10 *------- VotingProfile instance description ------*

11 Instance class : RandomLinearVotingProfile

12 Instance name : randLinearProfile

13 # Candidates : 15

14 # Voters : 1000

15 Attributes : ['name', 'seed', 'candidates',

16 'voters', 'WithPolls', 'RandomWeights',

17 'sumWeights', 'poll1', 'poll2',

18 'other', partyRepartition,

19 'linearBallot', 'ballot']

20 >>> lvp.showRandomPolls()

21 Random repartition of voters

22 Party_1 supporters : 460 (46.0%)

23 Party_2 supporters : 436 (43.6%)

24 Other voters : 104 (10.4%)

25 *---------------- random polls ---------------

26 Party_1(46.0%) | Party_2(43.6%)| expected

27 ---

28 a06 : 19.91% | a11 : 22.94% | a06 : 15.00%

29 a07 : 14.27% | a08 : 15.65% | a11 : 13.08%

30 a03 : 10.02% | a04 : 15.07% | a08 : 09.01%

(continues on next page)

43

(continued from previous page)

31 a13 : 08.39% | a06 : 13.40% | a07 : 08.79%

32 a15 : 08.39% | a03 : 06.49% | a03 : 07.44%

33 a11 : 06.70% | a09 : 05.63% | a04 : 07.11%

34 a01 : 06.17% | a07 : 05.10% | a01 : 05.06%

35 a12 : 04.81% | a01 : 05.09% | a13 : 05.04%

36 a08 : 04.75% | a12 : 03.43% | a15 : 04.23%

37 a10 : 04.66% | a13 : 02.71% | a12 : 03.71%

38 a14 : 04.42% | a14 : 02.70% | a14 : 03.21%

39 a05 : 04.01% | a15 : 00.86% | a09 : 03.10%

40 a09 : 01.40% | a10 : 00.44% | a10 : 02.34%

41 a04 : 01.18% | a05 : 00.29% | a05 : 01.97%

42 a02 : 00.90% | a02 : 00.21% | a02 : 00.51%

In this example (see linearVotingProfileWithPolls Lines 18-), we obtained 460
Party_1 supporters (46%), 436 Party_2 supporters (43.6%) and 104 other voters (10.4%).
Favorite candidates of Party_1 supporters, with more than 10%, appeared to be a06
(19.91%), a07 (14.27%) and a03 (10.02%). Whereas for Party_2 supporters, favorite
candidates appeared to be a11 (22.94%), followed by a08 (15.65%), a04 (15.07%) and
a06 (13.4%).

We may convert this linear voting profile into a PerformanceTableau object where each
party corresponds to a decision objective.

Listing 2.9: Converting a voting profile into a perfor-
mance tableau

1 >>> lvp.save2PerfTab('votingPerfTab')

2 >>> from perfTabs import PerformanceTableau

3 >>> vpt = PerformanceTableau('votingPerfTab')

4 >>> vpt

5 *------- PerformanceTableau instance description ------*

6 Instance class : PerformanceTableau

7 Instance name : votingPerfTab

8 # Actions : 15

9 # Objectives : 3

10 # Criteria : 1000

11 Attributes : ['name', 'actions', 'objectives',

12 'criteria', 'weightPreorder', 'evaluation']

13 >>> vpt.objectives

14 OrderedDict([

15 ('party0', {'name': 'other', 'weight': Decimal('104'),

16 'criteria': ['v0003', 'v0008', 'v0011', ... ']}),

17 ('party1', {'name': 'party 1', 'weight': Decimal('460'),

18 'criteria': ['v0002', 'v0006', 'v0007', ...]}),

19 ('party2', {'name': 'party 2', 'weight': Decimal('436'),

20 'criteria': ['v0001', 'v0004', 'v0005', ...]})

21])

44

In Listing 2.9 we first store the linear voting in a PerformanceTableau format (see
Line 1). In Line 3, we reload this performance tableau data. The three parties of the
linear voting profile represent three decision objectives and the voters are distributed as
performance criteria according to the party they support.

Multipartisan primary selection of eligible candidates

In order to make now a primary multipartisan selection of potential election winners,
we compute the corresponding unopposed multiobjective outranking digraph.

Listing 2.10: Computing unopposed multiobjective out-
ranking situations

1 >>> from outrankingDigraphs import \

2 ... UnOpposedBipolarOutrankingDigraph

3

4 >>> uog = UnOpposedBipolarOutrankingDigraph(vpt)

5 >>> uog

6 *------- Object instance description ------*

7 Instance class : UnOpposedBipolarOutrankingDigraph

8 Instance name : unopposed_outrankings

9 # Actions : 15

10 # Criteria : 1000

11 Size : 34

12 Oppositeness (%) : 67.31

13 Determinateness (%) : 57.61

14 Valuation domain : [-1.00;1.00]

15 Attributes : ['name', 'actions', 'valuationdomain',

16 'objectives', 'criteria', 'methodData',

17 'evaluation', 'order', 'runTimes', '

18 relation', 'marginalRelationsRelations',

19 'gamma', 'notGamma']

From the potential 105 pairwise outranking situations, we keep 34 positively validated
outranking situations, leading to a degree of oppositeness between political parties of
67.31%.

We may visualize the corresponding bipolar-valued relation table by orienting the list of
candidates with the help of the initial and the terminal prekernels.

Listing 2.11: Visualizing the unopposed outranking rela-
tion

1 >>> uog.showPreKernels()

2 *--- Computing preKernels ---*

3 Dominant preKernels :

4 ['a11', 'a06', 'a13', 'a15']

5 independence : 0.0

(continues on next page)

45

(continued from previous page)

6 dominance : 0.18

7 absorbency : -0.66

8 covering : 0.43

9 Absorbent preKernels :

10 ['a02', 'a04', 'a14', 'a03']

11 independence : 0.0

12 dominance : 0.0

13 absorbency : 0.37

14 covered : 0.46

15 >>> orientedCandidatesList = ['a06','a11','a13','a15',

16 ... 'a01','a05','a07','a08','a09','a10','a12',

17 ... 'a02','a03','a04','a14']

18

19 >>> uog.showHTMLRelationTable(

20 ... actionsList=orientedCandidatesList,

21 ... tableTitle='Unopposed three-partisan outrankings')

Fig. 2.2: Relation table of multipartisan outranking digraph

In Fig. 2.2, we may notice that the dominating outranking prekernel [‘a06’, ‘a11’, ‘a13’,
‘a15’] gathers in fact a multipartisan selection of potential election winners. It is
worthwhile noticing that in Fig. 2.2 the majority margins obtained from a linear voting
profile do verify the zero-sum rule

(︀
𝑟(𝑥 ≿ 𝑦) + 𝑟(𝑦 ≿ 𝑥) = 0.0

)︀
. To each positive

outranking situation corresponds indeed an equivalent negative converse situation and

46

the resulting outranking and strict outranking digraphs are the same.

Secondary election winner determination

When restricting now, in a secondary election stage, the set of eligible candidates to this
dominating prekernel, we may compute the actual best social choice.

Listing 2.12: Secondary election winner recommendation

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> g2 = BipolarOutrankingDigraph(vpt,

3 ... actionsSubset=['a06','a11','a13','a15'])

4

5 >>> g2.showRelationTable(ReflexiveTerms=False)

6 * ---- Relation Table -----

7 r | 'a06' 'a11' 'a13' 'a15'

8 .------|-------------------------------

9 'a06' | - +0.10 +0.48 +0.52

10 'a11' | -0.10 - +0.27 +0.29

11 'a13' | -0.48 -0.27 - +0.19

12 'a15' | -0.52 -0.29 -0.19 -

13 Valuation domain: [-1.000; 1.000]

14 >>> g2.computeCondorcetWinners()

15 ['a06']

16 >>> g2.computeCopelandRanking()

17 ['a06', 'a11', 'a13', 'a15']

Candidate a06 appears clearly to be the winner of this election. Notice by the way
that the restricted pairwise outranking relation shown in Listing 2.12 represents a linear
ordering of the preselected candidates.

We may eventually check the quality of this best choice by noticing that candidate a06
represents indeed the simple majority winner, the instant-run-off winner, the Borda, as
well as the Condorcet winner of the initially given linear voting profile lvp (see Listing
2.8).

Listing 2.13: Secondary election winner recommendation
verification

1 >>> lvp.computeSimpleMajorityWinner()

2 ['a06']

3 >>> lvp.computeInstantRunoffWinner()

4 ['a06']

5 >>> lvp.computeBordaWinners()

6 ['a06']

7 >>> from votingProfiles import MajorityMarginsDigraph

8 >>> cd = MajorityMarginsDigraph(lvp)

9 >>> cd.computeCondorcetWinners()

10 ['a06']

47

In our example voting profile here, the multipartisan primary selection stage appears
quite effective in reducing the number of eligible candidates to four out of a set of 15
candidates without btw rejecting the actual winning candidate.

Multipartisan preferences in divisive politics

However, in a very divisive two major party system, like in the US, where preferences
of the supporters of one party appear to be very opposite to the preferences of the
supporters of the other major party, the multipartisan outranking digraph will become
nearly indeterminate.

In Listing 2.14 below we generate such a divisive kind of linear voting profile with the help
of the DivisivePolitics flag5 (see Lines 4 and 13-19). When now converting the voting
profile into a performance tableau (Lines 20-21), we may compute the corresponding
unopposed outranking digraph.

Listing 2.14: A divisive two-party example of a random
linear voting profile

1 >>> from votingProfiles import RandomLinearVotingProfile

2 >>> lvp = RandomLinearVotingProfile(

3 ... numberOfCandidates=7,numberOfVoters=500,

4 ... WithPolls=True, partyRepartition=0.4,other=0.2,

5 ... DivisivePolitics=True, seed=1)

6

7 >>> lvp.showRandomPolls()

8 Random repartition of voters

9 Party_1 supporters : 240 (48.00%)

10 Party_2 supporters : 160 (32.00%)

11 Other voters : 100 (20.00%)

12 *---------------- random polls ---------------

13 Party_1(48.0%) | Party_2(32.0%)| expected

14 ---

15 a2 : 30.84% | a1 : 30.84% | a2 : 15.56%

16 a3 : 23.67% | a4 : 23.67% | a3 : 12.91%

17 a7 : 17.29% | a6 : 17.29% | a7 : 11.43%

18 a5 : 11.22% | a5 : 11.22% | a1 : 11.00%

19 a6 : 09.79% | a7 : 09.79% | a6 : 10.23%

20 a4 : 04.83% | a3 : 04.83% | a4 : 09.89%

21 a1 : 02.37% | a2 : 02.37% | a5 : 08.98%

22 >>> lvp.save2PerfTab('divisiveExample')

23 >>> dvp = PerformanceTableau('divisiveExample')

24 >>> from outrankingDigraphs import \

25 ... UnOpposedBipolarOutrankingDigraph

26

(continues on next page)

5 The RandomLinearVotingProfile constructor provides a DivisivePolitics flag (False by default)
for generating random linear voting profiles based on a divisive polls strucure

48

(continued from previous page)

27 >>> uodg = UnOpposedBipolarOutrankingDigraph(dvp)

28 >>> uodg

29 *------- Object instance description ------*

30 Instance class : UnOpposedBipolarOutrankingDigraph

31 Instance name : unopposed_outrankings

32 # Actions : 7

33 # Criteria : 500

34 Size : 0

35 Oppositeness (%) : 100.00

36 Determinateness (%) : 50.00

37 Valuation domain : [-1.00;1.00]

With an oppositeness degree of 100.0% (see Listing 2.14 Lines 33-34), the preferential
disagreement between the political parties is complete, and the unopposed outranking
digraph uodg becomes completely indeterminate as shown in the relation table below.

1 >>> uodg.showRelationTable(ReflexiveTerms=False)

2 * ---- Relation Table -----

3 r | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

4 -----|---

5 'a1' | - +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

6 'a2' | +0.00 - +0.00 +0.00 +0.00 +0.00 +0.00

7 'a3' | +0.00 +0.00 - +0.00 +0.00 +0.00 +0.00

8 'a4' | +0.00 +0.00 +0.00 - +0.00 +0.00 +0.00

9 'a5' | +0.00 +0.00 +0.00 +0.00 - +0.00 +0.00

10 'a6' | +0.00 +0.00 +0.00 +0.00 +0.00 - +0.00

11 'a7' | +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 -

12 Valuation domain: [-1.000; 1.000]

As a consequence, a multipartisan primary selection, computed with a
showBestChoiceRecommendation() method, will keep the complete initial set of eligible
candidates and, hence, becomes ineffective (see Listing 2.15 Line 6).

Listing 2.15: Example of ineffective primary multiparti-
san selection

1 >>> uodg.showBestChoiceRecommendation()

2 Rubis best choice recommendation(s) (BCR)

3 (in decreasing order of determinateness)

4 Credibility domain: [-1.00,1.00]

5 === >> ambiguous choice(s)

6 choice : ['a1','a2','a3','a4','a5','a6','a7']

7 independence : 0.00

8 dominance : 1.00

9 absorbency : 1.00

10 covered (%) : 100.00

11 determinateness (%) : 50.00

(continues on next page)

49

(continued from previous page)

12 - most credible action(s) = { }

With such kind of divisive voting profile, there may not always exist an obvious winner.
In Listing 2.16 below, we see, for instance, that the simple majority winnner is a2 (Line
2), whereas the instant-run-off winner is a6 (Line 4).

Listing 2.16: Example of secondary selection

1 >>> lvp.computeSimpleMajorityWinner()

2 ['a2']

3 >>> lvp.computeInstantRunoffWinner()

4 ['a6']

5 >>> from votingProfiles import MajorityMarginsDigraph

6 >>> cg = MajorityMarginsDigraph(lvp)

7 >>> cg.showRelationTable(ReflexiveTerms=False)

8 * ---- Relation Table -----

9 S | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

10 ------|------------------------------------

11 'a1' | - -68 -90 -46 -68 -88 -84

12 'a2' | +68 - -32 +80 +46 -6 -24

13 'a3' | +90 +32 - +58 +46 +4 +8

14 'a4' | +4 -80 -58 - -16 -68 -72

15 'a5' | +68 -46 -46 +16 - -26 -64

16 'a6' | +88 +6 -4 +68 "26 - -2

17 'a7' | +84 +24 -8 +72 "64 "2 -

18 Valuation domain: [-500;+500]

19 >>> cg.computeCondorcetWinners()

20 ['a3']

21 >>> lvp.computeBordaWinners()

22 ['a3','a7']

23 >>> cg.computeCopelandRanking()

24 ['a3', 'a7', 'a6', 'a2', 'a5', 'a4', 'a1']

But in our example here, we are lucky. When constructing with the pairwise major-
ity margins digraph (Line 6), a Condorcet winner, namely a3 becomes apparent (Lines
13,20), which is also one of the two Borda winners (Line 22). More interesting even is to
notice that the apparent majority margins digraph models in fact a linear ranking [‘a3’,
‘a7’, ‘a6’, ‘a2’, ‘a5’, ‘a4’, ‘a1’] of all the eligible candidates, as shown with a Copeland
ranking rule (Line 24).

We may eventually visualize in Listing 2.17 this linear ranking with a graphviz drawing
where we drop all transitive arcs (Line 1) and orient the drawing with Condorcet winner
a3 and loser a1 (Lines 2).

Listing 2.17: Drawing the linear ordering

1 >>> cg.closeTransitive(Reverse=True)

2 >>> cg.exportGraphViz('divGraph',firstChoice=['a3'],lastChoice=['a1'])
(continues on next page)

50

(continued from previous page)

3 *---- exporting a dot file for GraphViz tools ---------*

4 Exporting to divGraph.dot

5 dot -Grankdir=BT -Tpng divGraph.dot -o divGraph.png

Fig. 2.3: Linear ordering of the eligible candidates

Back to Content Table (page 1)

2.3 Tempering plurality tyranny effects with bipolar approval vot-

ing

The choice of a voting procedure shapes the democracy in which we live.

—Baujard A., Gavrel F., Igersheim H., Laslier J.-F. and Lebon I.
[BAU-2013p].

� Bipolar approval voting systems (page 52)

� Pairwise comparison of bipolar approval votes (page 55)

� Three-valued evaluative voting system (page 57)

51

� Favouring multipartisan candidates (page 60)

Bipolar approval voting systems

In the votingProfiles module we provide a BipolarApprovalVotingProfile class for
handling voting results where, for each eligible candidate c, the voters are invited to
approve (+1), disapprove (-1), or ignore (0) the statement that candidate C should
win the election.

File bpApVotingProfile.py contains such a bipolar approval voting profile concerning 100
voters and 15 eligible candidates. We may inspect its content as follows.

1 >>> from votingProfiles import *

2 >>> bavp = BipolarApprovalVotingProfile('bpApVotingProfile')

3 >>> bavp

4 *------- VotingProfile instance description ------*

5 Instance class : BipolarApprovalVotingProfile

6 Instance name : bpApVotingProfile

7 # Candidates : 15

8 # Voters : 100

9 Attributes : ['name', 'candidates', 'voters',

10 'approvalBallot', 'netApprovalScores',

11 'ballot']

Beside the bavp.candidates and bavp.voters attributes, we discover in Line 10 above the
bavp.approvalBallot attribute which gathers bipolar approval votes. Its content is the
following.

Listing 2.18: Inspecting a bipolar approval ballot

1 >>> bavp.approvalBallot

2 {'v001':

3 {'a01': Decimal('0'),

4 ...

5 'a04': Decimal('1'),

6 ...

7 'a15': Decimal('0')

8 },

9 'v002':

10 {'a01': Decimal('-1'),

11 'a02': Decimal('0'),

12 ...

13 'a15': Decimal('1')

14 },

15 ...

16 v100':

17 {'a01': Decimal('0'),

(continues on next page)

52

_static/bpApVotingProfile.py

(continued from previous page)

18 'a02': Decimal('1'),

19 ...

20 'a15': Decimal('1')

21 }

22 }

Let us denote 𝐴𝑣 the set of candidates approved by voter v. In Listing 2.18 we hence
record in fact the bipolar-valued truth characteristic values 𝑟(𝑐 ∈ 𝐴𝑣) of the statements
that candidate c is approved by voter v. In Line 5, we observe for instance that voter
v001 positively approves candidate a04. And, in Line 10, we see that voter v002
negatively approves, i.e. positively disapproves candidate a01. We may now consult
how many approvals or disapprovals each candidate receives.

1 >>> bavp.showApprovalResults()

2 Approval results

3 Candidate: a12 obtains 34 votes

4 Candidate: a05 obtains 30 votes

5 Candidate: a03 obtains 28 votes

6 Candidate: a14 obtains 27 votes

7 Candidate: a11 obtains 27 votes

8 Candidate: a04 obtains 27 votes

9 Candidate: a01 obtains 27 votes

10 Candidate: a13 obtains 24 votes

11 Candidate: a07 obtains 24 votes

12 Candidate: a15 obtains 23 votes

13 Candidate: a02 obtains 23 votes

14 Candidate: a09 obtains 22 votes

15 Candidate: a08 obtains 22 votes

16 Candidate: a10 obtains 21 votes

17 Candidate: a06 obtains 21 votes

18 Total approval votes: 380

19 Approval proportion: 380/1500 = 0.25

20 >>> bavp.showDisapprovalResults()

21 Disapproval results

22 Candidate: a12 obtains 16 votes

23 Candidate: a03 obtains 22 votes

24 Candidate: a09 obtains 23 votes

25 Candidate: a04 obtains 24 votes

26 Candidate: a06 obtains 24 votes

27 Candidate: a13 obtains 24 votes

28 Candidate: a11 obtains 25 votes

29 Candidate: a02 obtains 26 votes

30 Candidate: a07 obtains 26 votes

31 Candidate: a08 obtains 26 votes

32 Candidate: a05 obtains 27 votes

33 Candidate: a10 obtains 27 votes

(continues on next page)

53

(continued from previous page)

34 Candidate: a14 obtains 27 votes

35 Candidate: a15 obtains 27 votes

36 Candidate: a01 obtains 32 votes

37 Total disapproval votes: 376

38 Disapproval proportion: 376/1500 = 0.25

In Lines 3 and 22 above, we may see that, of all potential candidates, it is Candidate
a12 who receives the highest number of approval votes (34) and the lowest number
of disapproval votes (16). Total number of approval, respectively disapproval, votes
approaches more or less a proportion of 25% of the 100*15 = 1500 potential approval
votes. About 50% of the latter remain hence ignored.

When operating now, for each candidate c, the difference between the number of approval
and the number of disapproval votes he receives, we obtain per candidate a corresponding
net approval score; in fact, the bipolar truth characteristic value of the statement
candidate c should win the election.

r(Candidate c should win the election) =
∑︀

𝑣

(︀
𝑟(𝑐 ∈ 𝐴𝑣)

)︀
These bipolar characteristic values are stored in the bavp.netApprovalScores attribute and
may be printed out as follows.

1 >>> bavp.showNetApprovalScores()

2 Net Approval Scores

3 Candidate: a12 obtains 18 net approvals

4 Candidate: a03 obtains 6 net approvals

5 Candidate: a05 obtains 3 net approvals

6 Candidate: a04 obtains 3 net approvals

7 Candidate: a11 obtains 2 net approvals

8 Candidate: a14 obtains 0 net approvals

9 Candidate: a13 obtains 0 net approvals

10 Candidate: a09 obtains -1 net approvals

11 Candidate: a07 obtains -2 net approvals

12 Candidate: a06 obtains -3 net approvals

13 Candidate: a02 obtains -3 net approvals

14 Candidate: a15 obtains -4 net approvals

15 Candidate: a08 obtains -4 net approvals

16 Candidate: a01 obtains -5 net approvals

17 Candidate: a10 obtains -6 net approvals

We observe in Line 3 above that Candidate a12, with a net approval score of 34 - 16
= 18, represents indeed the best approved candidate for winning the election. With
a net approval score of 28-22 = 6, Candidate a03 appears 2nd-best approved. The
net approval scores define hence a potentially weak ranking on the set of eligible elec-
tion candidates, and the winner(s) of the election is(are) determined by the first-ranked
candidate(s).

54

Pairwise comparison of bipolar approval votes

The approval votes of each voter define now on the set of eligible candidates three ordered
categories: his approved (+1), his ignored (0) and his disapproved (-1) ones. Within each
of these three categories we consider the voter’s actual preferences as not communi-
cated, i.e. as missing data. This gives for each voter a partially determined strict order
which we find in the bavp.ballot attribute.

1 >>> bavp.ballot['v001']['a12']

2 {'a02': Decimal('1'), 'a11': Decimal('1'),

3 'a14': Decimal('1'), 'a04': Decimal('0'),

4 'a06': Decimal('1'), 'a05': Decimal('1'),

5 'a12': Decimal('0'), 'a13': Decimal('0'),

6 'a15': Decimal('1'), 'a01': Decimal('1'),

7 'a08': Decimal('1'), 'a07': Decimal('1'),

8 'a09': Decimal('0'), 'a03': Decimal('1'),

9 'a10': Decimal('0')}

For voter v001, for instance, the best approved candidate a12 is strictly preferred to
candidates: a01, a02, a03, a05, a06, a07, a08, a11, a14 and 15. No candidate is preferred
to a12 and the comparison with a04, a09, a10 and a13 is not communicated, hence
indeterminate. Mind by the way that the reflexive comparison of a12 with itself is, as
usual, is ignored, i.e. indeterminate. Each voter v defines thus a partially determined
transitive strict preference relation denoted ≻𝑣 on the eligible candidates.

For each pair of eligible candidates, we aggregate the previous individual voter’s prefer-
ences into a truth characteristic of the statement: candidate x is better approved than
candidate y, denoted 𝑟(𝑥 ≻ 𝑦)

𝑟(𝑥 ≻ 𝑦) =
∑︀

𝑣

(︀
𝑟(𝑥 ≻𝑣 𝑦)

)︀
.

We say that candidate x is better approved than Candidate y when 𝑟(𝑥 ≻ 𝑦) > 0, i.e.
there is a majority of voters who approve more and disapprove less x than y. Vice-versa,
we say that candidate x is not better approved than candidate y when 𝑟(𝑥 ≻ 𝑦) < 0,
i.e. there is a majority of voters who disapprove more and approve less x than y. This
computation is achieved with the MajorityMarginsDigraph constructor.

1 >>> from votingProfiles import MajorityMarginsDigraph

2 >>> m = MajorityMarginsDigraph(bavp)

3 >>> m

4 *------- Digraph instance description ------*

5 Instance class : MajorityMarginsDigraph

6 Instance name : rel_bpApVotingProfile

7 Digraph Order : 15

8 Digraph Size : 97

9 Valuation domain : [-100.00;100.00]

10 Determinateness (%) : 52.55

11 Attributes : ['name', 'actions', 'criteria',

12 'ballot', 'valuationdomain', '

(continues on next page)

55

(continued from previous page)

13 relation', 'order',

14 'gamma', 'notGamma']

The resulting digraph m contains 97 positively validated relations (see Line 8 above) and
(see Line 9) for all pairs (𝑥, 𝑦) of eligible candidates, 𝑟(𝑥 ≻ 𝑦) takes value in an valuation
range from -100.00 (all voters opposed) to +100.00 (unanimously supported).

We may inspect these pairwise 𝑟(𝑥 ≻ 𝑦) values in a browser view.

>>> m.showHTMLRelationTable(relationName='r(x > y)')

Fig. 2.4: The bipolar-valued pairwise majority margins

It gets easily apparent that candidate a12 constitutes a Condorcet winner, i.e. the
candidate who beats all the other candidates and, with the given voting profile gavp,
should without doubt win the election. This strongly confirms the first-ranked result
obtained with the previous net approval scoring.

Let us eventually compute, with the help of the NetFlows ranking rule), a linear ranking
of the 15 eligible candidates and compare the result with the net approval scores’ ranking.

1 >>> from linearOrders import NetFlowsOrder

2 >>> nf = NetFlowsOrder(m,Comments=True)

3 >>> print('NetFlows versus Net Approval Ranking')

4 >>> print('Candidate\tNetFlows score\tNet Approval score')

5 >>> for item in nf.netFlows:

(continues on next page)

56

(continued from previous page)

6 ... print('%9s \t %+.3f \t %+.1f ' %\

7 ... (item[1], item[0], bavp.netApprovalScores[item[1]]))

8

9 NetFlows versus Net Approval Ranking

10 Candidate NetFlows score Net Approval score

11 a12 +410.000 +18.0

12 a03 +142.000 +6.0

13 a04 +98.000 +3.0

14 a05 +54.000 +3.0

15 a11 +34.000 +2.0

16 a09 -16.000 -1.0

17 a14 -20.000 +0.0

18 a13 -22.000 +0.0

19 a06 -50.000 -3.0

20 a07 -74.000 -2.0

21 a02 -96.000 -3.0

22 a08 -102.000 -4.0

23 a15 -110.000 -4.0

24 a10 -122.000 -6.0

25 a01 -126.000 -5.0

On the better approved than majority margins digraph m, the NetFlows rule delivers a
ranking that is very similar to the one previously obtained with the corresponding Net
Approval scores. Only minor inversions do appear, like in the midfield, where candidate
a09 advances before candidates a13 and a14 and a6 and a07 swap their positions 9 and
10. And, the two last-ranked candidates also swap their positions.

This confirms again the pertinence of the net approval scoring approach for finding the
winner in a bipolar approving voting system. Yet, voting by approving (+1), disapproving
(-1) or ignoring (0) eligible candidates, may also be seen as a performance evaluation of
the eligible candidates on a {-1, 0, 1}-graded ordinal scale.

Three-valued evaluative voting system

Following such an epistemic perspective, we may effectively convert the given
BipolarApprovalVotingProfile instance into a PerformanceTableau instance, so as
to get access to a corresponding outranking decision aiding approach.

Mind that, contrary to the majority margins of the better approved than relation, all
voters consider now the approved candidates to be all equivalent (+1). Same is true
for the disapproved (-1), respectively the ignored candidates (0). The voter’s marginal
preferences model this time a complete preorder with three equivalence classes.

From the saved file AVPerfTab.py (see Line 1 below), we may construct an outrank-
ing relation on the eligible candidates with our standard BipolarOutrankingDigraph

constructor. The semantics of this outranking relation are the following:

� We say that Candidate x outranks Candidate y when there is a majority of voters

57

who consider x at least as well evaluated as y.(see Line3 below).

� We say that Candidate x is not outranked by Candidate y when there is a
majority of voters who consider x not at least as well evaluated as y.

1 >>> bavp.save2PerfTab(fileName='AVPerfTab',valueDigits=0)

2 *--- Saving as performance tableau in file: <AVPerfTab.py> ---*

3 >>> from outrankingDigraphs import BipolarOutrankingDigraph

4 >>> odg = BipolarOutrankingDigraph('AVPerfTab')

5 >>> odg

6 *------- Object instance description ------*

7 Instance class : BipolarOutrankingDigraph

8 Instance name : rel_AVPerfTab

9 # Actions : 15

10 # Criteria : 100

11 Size : 210

12 Determinateness (%) : 69.29

13 Valuation domain : [-1.00;1.00]

14 Attributes : ['name', 'actions', 'order,

15 'criteria', 'evaluation', 'NA',

16 'valuationdomain', 'relation',

17 'gamma', 'notGamma', ...]

The size (210 = 15*14) of the resulting outranking digraph odg, shown in Line 11 above,
reveals that the corresponding at least as good evaluated as (outranking) relation models
actually a trivial complete digraph. All candidates appear to be equally at least as well
evaluated and the better evaluated than (strict outranking) codual outranking digraph
becomes in fact empty. The converted performance tableau does apparently not contain
sufficiently discriminatory performance evaluations for supporting any strict preference
situations.

Yet, we may nevertheless try to apply again the NetFlows ranking rule to this complete
outranking digraph g and print side by side the corresponding NetFlows scores and the
previous Net Approval scores.

1 >>> from linearOrders import NetFlowsOrder

2 >>> nf = NetFlowsOrder(odg)

3 >>> print('NetFlows versus Net Approval Ranking')

4 >>> print('Candidate\tNetFlows Score\tNet Approval Score')

5 >>> for item in nf.netFlows:

6 ... print('%9s \t %+.3f \t %+.0f ' %\

7 ... (item[1], item[0],bavp.netApprovalScores[item[1]]))

8

9 NetFlows versus Net Approval Ranking

10 Candidate NetFlows score Net Approval score

11 a12 +4.100 +18.0

12 a03 +1.420 +6.0

13 a04 +0.980 +3.0

14 a05 +0.540 +3.0

(continues on next page)

58

(continued from previous page)

15 a11 +0.340 +2.0

16 a09 -0.160 -1.0

17 a14 -0.200 +0.0

18 a13 -0.220 +0.0

19 a06 -0.500 -3.0

20 a07 -0.740 -2.0

21 a02 -0.960 -3.0

22 a08 -1.020 -4.0

23 a15 -1.100 -4.0

24 a10 -1.220 -6.0

25 a01 -1.260 -5.0

Despite its apparent poor strict preference discriminating power, we obtain here NetFlows
scores that are directly proportional (divided by 100) to the scores obtained with the better
approved than majority margins digraph m.

Encouraged by this positive result, we may furthermore try to compute as well a best
choice recommendation.

1 >>> odg.showBestChoiceRecommendation()

2 ***********************

3 Rubis best choice recommendation(s) (BCR)

4 (in decreasing order of determinateness)

5 Credibility domain: [-1.00,1.00]

6 === >> ambiguous first choice(s)

7 * choice : ['a01', 'a02', 'a03', 'a04', 'a05',

8 'a06', 'a07', 'a08', 'a09', 'a10',

9 'a11', 'a12', 'a13', 'a14', 'a15']

10 independence : 0.06

11 dominance : 1.00

12 absorbency : 1.00

13 covering (%) : 100.00

14 determinateness (%) : 61.13

15 - most credible action(s) = {

16 'a12': 0.44, 'a03': 0.34, 'a04': 0.30,

17 'a14': 0.28, 'a13': 0.24, 'a06': 0.24,

18 'a11': 0.20, 'a10': 0.20, 'a07': 0.20,

19 'a01': 0.20, 'a08': 0.18, 'a05': 0.18,

20 'a15': 0.14, 'a09': 0.14, 'a02': 0.06, }

21 === >> ambiguous last choice(s)

22 * choice : ['a01', 'a02', 'a03', 'a04', 'a05',

23 'a06', 'a07', 'a08', 'a09', 'a10',

24 'a11', 'a12', 'a13', 'a14', 'a15']

25 independence : 0.06

26 dominance : 1.00

27 absorbency : 1.00

28 covered (%) : 100.00
(continues on next page)

59

(continued from previous page)

29 determinateness (%) : 63.73

30 - most credible action(s) = {

31 'a13': 0.36, 'a06': 0.36, 'a15': 0.34,

32 'a01': 0.34, 'a08': 0.32, 'a07': 0.30,

33 'a02': 0.30, 'a14': 0.28, 'a11': 0.28,

34 'a09': 0.28, 'a04': 0.26, 'a10': 0.24,

35 'a05': 0.20, 'a03': 0.20, 'a12': 0.06, }

The outranking digraph odg being actually empty, we obtain a unique ambiguous –first
as well as last– choice recommendation which trivially retains all fifteen candidates (see
Lines 6-9 above). Yet, the bipolar-valued best choice membership characteristic vector
reveals that, among all the fifteen potential winners, it is indeed Candidate a12 the most
credible one with a 72% majority of voters’ support (see Line 16, (0.44+1.0)/2 = 0.72);
followed by Candidate a03 (67%) and Candidate a04 (65%). Similarly, Candidates a13
and a06 represent the most credible losers with a 68% majority voters’ support (Line
31).

Note: We observe here empirically that evaluative voting systems, using three-valued
ordinal performance scales, match closely bipolar approval voting systems. The latter
voting system models, however, more faithfully the very preferential information that is
expressed with approved, disapproved or ignored statements. The corresponding evalua-
tion on a three-graded scale, being value (numbers) based, cannot express the fact that in
bipolar approval voting systems there is no preferential information given concerning
the pairwise comparison of all approved, respectively disapproved or ignored candidates.

Let us finally illustrate how bipolar approval voting systems may favour multipartisan
supported candidates. We shall therefore compare bipolar approval versus uninominal
plurality election results when considering a highly divisive and partisan political context.

Favouring multipartisan candidates

In modern democracy, politics are largely structured by political parties and activists
movements. Let us so consider a bipolar approval voting profile dvp where the random
voter behaviour is simulated from two pre-electoral polls concerning a political scene with
essentially two major competing parties, like the one existing in the US.

1 >>> dvp = RandomBipolarApprovalVotingProfile(\

2 ... numberOfCandidates=15,

3 ... numberOfVoters=100,

4 ... approvalProbability=0.25,

5 ... disapprovalProbability=0.25,

6 ... WithPolls=True,

7 ... partyRepartition=0.5,

8 ... other=0.05,

9 ... DivisivePolitics=True,
(continues on next page)

60

(continued from previous page)

10 ... seed=200)

11

12 >>> dvp.showRandomPolls()

13 Random repartition of voters

14 Party_1 supporters : 45 (45.00%)

15 Party_2 supporters : 49 (49.00%)

16 Other voters : 6 (06.00%)

17 *---------------- random polls ---------------

18 Party_1(45.0%) | Party_2(49.0%)| expected

19 ---

20 a05 : 24.10% | a07 : 24.10% | a07 : 11.87%

21 a14 : 23.48% | a10 : 23.48% | a10 : 11.60%

22 a03 : 15.13% | a01 : 15.13% | a05 : 10.91%

23 a12 : 07.55% | a04 : 07.55% | a14 : 10.67%

24 a08 : 07.11% | a09 : 07.11% | a01 : 07.67%

25 a15 : 04.37% | a13 : 04.37% | a03 : 07.09%

26 a11 : 03.99% | a02 : 03.99% | a04 : 04.55%

27 a06 : 03.80% | a06 : 03.80% | a09 : 04.49%

28 a02 : 02.79% | a11 : 02.79% | a12 : 04.32%

29 a13 : 02.63% | a15 : 02.63% | a08 : 04.30%

30 a09 : 02.24% | a08 : 02.24% | a06 : 03.57%

31 a04 : 01.89% | a12 : 01.89% | a13 : 03.32%

32 a01 : 00.57% | a03 : 00.57% | a15 : 03.25%

33 a10 : 00.20% | a14 : 00.20% | a02 : 03.21%

34 a07 : 00.14% | a05 : 00.14% | a11 : 03.16%

The divisive political situation is reflected by the fact that Party_1 and Party_2 support-
ers show strict reversed preferences. The leading candidates of Party_1 (a05 and a14)
are last choices for Party_2 supporters and, Candidates a07 and a10, leading candidates
for Party_2 supporters, are similarly the least choices for Party_1 supporters.

No clear winner may be guessed from these pre-election polls. As Party_2 shows however
slightly more supporters than Party_1, the expected winner in an uninominal plurality or
instant-runoff voting system will be Candidate a07, i,e, the leading candidate of Party_2
(see below).

1 >>> dvp.computeSimpleMajorityWinner()

2 ['a07']

3 >>> dvp.computeInstantRunoffWinner()

4 ['a07']

Now, in a corresponding bipolar approval voting system, Party_1 supporters will usu-
ally approve their leading candidates and disapprove the leading candidates of Party_2.
Vice versa, Party_2 supporters will usually approve their leading candidates and disap-
prove the leading candidates of Party_1. Let us consult the resulting approval votes per
candidate.

61

1 >>> dvp.showApprovalResults()

2 Candidate: a07 obtains 30 votes

3 Candidate: a10 obtains 28 votes

4 Candidate: a05 obtains 28 votes

5 Candidate: a01 obtains 28 votes

6 Candidate: a03 obtains 26 votes

7 Candidate: a02 obtains 26 votes

8 Candidate: a12 obtains 25 votes

9 Candidate: a14 obtains 24 votes

10 Candidate: a13 obtains 24 votes

11 Candidate: a09 obtains 21 votes

12 Candidate: a04 obtains 21 votes

13 Candidate: a08 obtains 19 votes

14 Candidate: a06 obtains 17 votes

15 Candidate: a15 obtains 15 votes

16 Candidate: a11 obtains 12 votes

17 Total approval votes: 344

18 Approval proportion: 344/1500 = 0.23

When considering only the approval votes, we find confirmed above that the leading can-
didate of Party_2 obtains in this simulation a plurality of approval votes. In uninominal
plurality or instant-runoff voting systems, this candidate wins hence the election, quite to
the despair of Party_1 supporters. As a foreseeable consequence, this election result will
be more or less aggressively contested which leads to a loss of popular trust in democratic
elections and institutions.

If we look however on the corresponding disapprovals, we discover that, not surprisingly,
the leading candidates of both parties collect by far the highest number of disapproval
votes.

1 >>> dvp.showDisapprovalResults()

2 Candidate: a02 obtains 14 votes

3 Candidate: a04 obtains 14 votes

4 Candidate: a13 obtains 14 votes

5 Candidate: a06 obtains 15 votes

6 Candidate: a09 obtains 15 votes

7 Candidate: a08 obtains 16 votes

8 Candidate: a11 obtains 16 votes

9 Candidate: a15 obtains 18 votes

10 Candidate: a12 obtains 20 votes

11 Candidate: a01 obtains 29 votes

12 Candidate: a03 obtains 30 votes

13 Candidate: a10 obtains 37 votes

14 Candidate: a07 obtains 44 votes

15 Candidate: a14 obtains 45 votes

16 Candidate: a05 obtains 49 votes

17 Total disapproval votes: 376

18 Disapproval proportion: 376/1500 = 0.25

62

Balancing now approval against disapproval votes will favour the moderate, bipartisan
supported, candidates.

1 >>> dvp.showNetApprovalScores()

2 Net Approval Scores

3 Candidate: a02 obtains 12 net approvals

4 Candidate: a13 obtains 10 net approvals

5 Candidate: a04 obtains 7 net approvals

6 Candidate: a09 obtains 6 net approvals

7 Candidate: a12 obtains 5 net approvals

8 Candidate: a08 obtains 3 net approvals

9 Candidate: a06 obtains 2 net approvals

10 Candidate: a01 obtains -1 net approvals

11 Candidate: a15 obtains -3 net approvals

12 Candidate: a11 obtains -4 net approvals

13 Candidate: a03 obtains -4 net approvals

14 Candidate: a10 obtains -9 net approvals

15 Candidate: a07 obtains -14 net approvals

16 Candidate: a14 obtains -21 net approvals

17 Candidate: a05 obtains -21 net approvals

Candidate a02, appearing in the pre-electoral polls in the midfield (in position 7 for
Party_2 and in position 9 for Party_1 supporters), shows indeed the highest net approval
score. Second highest net approval score obtains Candidate a13, in position 6 for Party_2
and in position 10 for Party_1 supporters.

Fig. 2.5, showing the NetFlows ranked relation table of the better approved than majority
margins digraph, confirms below this net approval scoring result.

>>> m = MajorityMarginsDigraph(dvp)

>>> m.showHTMLRelationTable(\

... actionsList=m.computeNetFlowsRanking(),

... relationName='r(x > y)')

63

Fig. 2.5: The pairwise better approved than majority margins

Candidate a02 appears indeed better approved than any other candidate (Condorcet win-
ner); and, the leading candidates of Party_1, a05 and a14, are less approved than any
other candidates (weak Condorcet losers).

1 >>> m.computeCondorcetWinners()

2 ['a02']

3 >>> m.computeWeakCondorcetLosers()

4 ['a05','a14']

We see this result furthermore confirmed when computing the corresponding first, re-
spectively last choice recommendation.

1 >>> m.showBestChoiceRecommendation()

2 Rubis best choice recommendation(s) (BCR)

3 (in decreasing order of determinateness)

4 Credibility domain: [-100.00,100.00]

5 === >> potential first choice(s)

6 * choice : ['a02']

7 independence : 100.00

8 dominance : 5.00

9 absorbency : -23.00

10 covering (%) : 100.00

11 determinateness (%) : 52.50

12 - most credible action(s) = { 'a02': 5.00, }

(continues on next page)

64

(continued from previous page)

13 === >> potential last choice(s)

14 * choice : ['a05', 'a14']

15 independence : 0.00

16 dominance : -23.00

17 absorbency : 5.00

18 covered (%) : 100.00

19 determinateness (%) : 50.00

20 - most credible action(s) = { }

Candidate a02, being actually a Condorcet winner, gives an initial dominating kernel of
digraphm, whereas Party_1 leading Candidates a05 and a14, both being weak Condorcet
losers, give together a terminal dominated prekernel. They hence represent our first
choice, respectively, last choice recommendations for winning this simulated election.

Let us conclude by predicting that, for leading political candidates in an aggressively di-
visive political context, the perspective to easily fail election with bipolar approval voting
systems, might or will induce a change in the usual way of running electoral campaigns.
Political parties and politicians, who avoid aggressive competitive propaganda and in-
stead propose multipartisan collaborative social choices, will be rewarded with better
election results than any kind of extremism. It could mean the end of sterile political
obstructions and war like electoral battles.

Let’s do it.

Note: It is worthwhile noticing the essential structural and computational role, the
zero value is again playing in bipolar approval voting systems. This epistemic and
logical neutral term is needed indeed for handling in a consistent and efficient manner
not communicated votes and/or indeterminate preferential statements.

Back to Content Table (page 1)

2.4 Selecting the winner of a primary election: a critical commen-

tary

� The French popular primary presidential election 2022 (page 66)

� A bipolar approval-disapproval election (page 67)

� Ranking the potential presidential candidates (page 68)

“A rating is not a vote.”9

9 “Il faut qu’il y ait un vote et pas une note. Les électeurs ne sont pas des juges, ce sont des

citoyens” Fr. Hollande (31/01/2022) https://www.bfmtv.com/politique/elections/presidentielle/
une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_

65

https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html

—Fr. Hollande (2022)

The French popular primary presidential election 2022

Deploring in the forefront of the presidential election 2022 the utmost division in France
of the political landscape on the left and ecological border, a group of young activists took
the initiative to organize a popular primary election in order to make appear a unique
multipartisan candidate10.

130,000 engaged citizens proposed and promoted, in view of their respective political pro-
grams, seven political personalities for this primary presidential election, namely: Anna
Agueb-Porterie, Anne Hidalgo, Yannick Jadot, Pierre Larrouturou, Charlotte Marchan-
dise, Jean-Luc Mélenchon and Christiane Taubira.

From January 27 to 30 2022, 392 738 voters participated eventually in a primary presi-
dential election by grading on-line these seven candidates on a five-steps suitability scale:
Very Good, Good, Quite Good, Fair and Insufficient for being a potential multipartisan
candidate. Below the resulting grades distribution in percents obtained by each person-
ality.

Table 2.1: The popular primary election results (in %)

Personality Very Good Good Quite Good Fair Insufficient

A Agueb-Porterie 2.86 7.34 18.19 21.05 50.56
A Hidalgo 6.33 13.36 20.70 23.80 35.81
Y Jadot 21.57 23.11 20.57 15.54 19.21
P Larrouturou 13.37 14.53 19.42 18.11 34.58
Ch Marchandise 3.41 8.93 19.59 21.87 46.20
J-L Mélenchon 20.49 15.33 16.73 18.29 29.16
Ch Taubira 49.41 18.00 11.68 7.91 12.99

It is important to notice in Table 2.1 that almost half of these 392 738 primary voters
(49.41%) appear to be Taubira supporters.

For naming the winner of this primary election, the organizers used theMajority Judgment
-a median grade- approach [BAL-2011]. With this decision algorithm, the election result
became obvious. Only Taubira obtains a Good median grade, followed by Jadot and
Mélenchon with Quite Good median grades. Hence Christiane Taubira was declared
being the most suitable multipartisan presidential candidate.

Yet, this median grade approach makes the implicit hypothesis that the distributions of
grades obtained by the candidates show indeed a convincing order statistical center. Sup-
pose for instance that a first personality obtains 51% Very Good and 49% of Insufficient
votes. Her median evaluation will be Very Good. A second personality obtains 49% of
Very Good and 51% of Good votes. Her median evaluation will be only Good, even if
the latter overall evaluation is evidently by far better than the first one. The Majority
Judgment approach does hence not temper simple plurality induced effects. In the results

AN-202201310516.html
10 See https://primairepopulaire.fr/la-primaire/

66

https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://www.bfmtv.com/politique/elections/presidentielle/une-note-n-est-pas-un-vote-francois-hollande-regrette-que-la-primaire-populaire-ne-change-rien_AN-202201310516.html
https://primairepopulaire.fr/la-primaire/

shown in Table 2.1 the large plurality of Taubira supporters clearly forces the issue of
this primary election.

The set of voters participating in this primary election does evidently not cover ex-
haustively all the supporters of each one of the seven potential presidential candidates.
Hence, they do not represent a coherent family of performance criteria for selecting the
most suitable multipartisan candidate.

To avoid such controversial election results, we need to abandon the evaluative judgment
perspective and go instead for a bipolar approval-disapproval approach.

A bipolar approval-disapproval election

Let us therefore notice that the ordinal judgment scale used in the Majority Judgment
approach shows in fact a bipolar structure. On the positive side, we have three levels of
more or less Good evaluations, namely Very Good, Good and Quite Good grades, and on
the negative side, we have the Insufficient grade. The Fair votes are constrained by the
constant total number of 392 738 votes obtained by each candidates and must hence be
neglected. They correspond in an epistemic perspective to a kind of abstention.

Thus, two equally significant decision criteria do emerge. The winner of the popular
primary election should obtain:

1. a maximum of approvals: sum of Very Good, Good and Quite Good votes, and

2. a minimum of disapprovals: Insufficient votes.

The best suited multipartisan presidential candidate should as a consequence present the
highest net approval score: total of approval votes minus total of disapproval votes.
In Table 2.2 we show the resulting ranking by descending net approval score.

Table 2.2: The bipolar approval-disapproval results (in
%)

Personality Net approval Approval Disapproval Abstention

Ch Taubira +66.11 79.10 12.99 07.91
Y Jadot +46.04 65.25 19.21 15.54
J-L Mélenchon +23.39 52.55 29.16 18.29
P Larrouturou +12.74 47.32 34.58 18.11
A Hidalgo +04.57 40.39 35.81 23.80
Ch Marchandise -14.28 31.92 46.20 21.87
A Agueb-Porterie -22.16 28.39 50.56 21.05

Without surprise, it is again Christaine Taubira who shows the highest net approval
score (+66.11%), followed by Yannick Jadot (+46.04%). Notice that both Ch Marchan-
dise (-14.28%) and A Agueb-Porterie (-22.16%) are positively disapproved as potential
multipartisan presidential candidates.

It is furthermore remarkable that both the approval votes and the the disapproval votes
model the same linear ranking of the seven candidates.

67

Ranking the potential presidential candidates

To illustrate this point we provide a corresponding perfTabs.PerformanceTableau ob-
ject in file primPopRes.py in the examples directory of the Digraph3 resources.

1 >>> from perfTabs import PerformanceTableau

2 >>> t = PerformanceTableau('primPopRes')

3 >>> t

4 *--- PerformanceTableau instance description ---*

5 Instance class : PerformanceTableau

6 Instance name : primPopRes

7 Actions : 7

8 Objectives : 0

9 Criteria : 3

10 Attributes : ['name', 'actions', 'objectives',

11 'criteria', 'weightPreorder',

12 'NA', 'evaluation']

When showing now the heatmap of the seven candidates approvals, disapprovals and
abstentions, we see confirmed in Fig. 2.6 that both approvals and disapprovals scores
model indeed the same linear ranking.

1 >>> t.showHTMLPerformanceHeatmap(Correlations=True,

2 ... ndigits=2,colorLevels=3,

3 ... pageTitle='Ranked primary election results',

4 ... WithActionNames=True)

Fig. 2.6: Ranked popular primary election results

68

Notice that it is in principle possible to allocate a negative significance weight to a per-
formance criterion (see row 2 in Fig. 2.6). The constructor of the outrankingDigraphs.
BipolarOutrankingDigraph class will, the case given, consider that the corresponding
criterion supports a negative preference direction11. Allocating furthermore a zero sig-
nificance weight to the abstentions does allow to ignore this figure in the ranking result.
The ordinal correlation index becomes irrelevant in this case and is set to zero (see row
3).

It is eventually interesting to notice that the NetFlows ranking does precisely match the
unique linear ranking modelled by the approval and disapproval votes. This exceptional
situation indicates again that the majority of participating voters appear to belong to a
very homogeneous political group –essentially Taubira supporters– which unfortunately
invalidates thus the claim that the winner of this primary election represents actually the
best suited multipartisan presidential candidate on the left and ecological border.

Back to Content Table (page 1)

3 Theoretical advancements

� Ordinal correlation equals bipolar-valued relational equivalence (page 69)

� On computing digraph kernels (page 79)

� Bipolar-valued kernel membership characteristic vectors (page 99)

� On characterizing bipolar-valued outranking digraphs (page 107)

� Consensus quality of the bipolar-valued outranking relation (page 115)

3.1 Ordinal correlation equals bipolar-valued relational equivalence

� Kendall’s tau index (page 70)

� Bipolar-valued relational equivalence (page 71)

� Fitness of ranking heuristics (page 74)

� Illustrating preference divergences (page 76)

� Exploring the better rated and the as well as rated opinions (page 77)

11 Only the standard bipolar-valued outranking model supports negative significance weights and pos-
itive evaluations. When using other outranking models, it is necessary to record, the case given, negative
evaluations with a positive significance weight

69

Kendall’s tau index

M. G. Kendall ([KEN-1938p]) defined his ordinal correlation 𝜏 (tau) index for linear
orders of dimension n as a balancing of the number #Co of correctly oriented pairs
against the number #In of incorrectly oriented pairs. The total number of irreflexive
pairs being n(n-1), in the case of linear orders, #𝐶𝑜 + #𝐼𝑛 = 𝑛(𝑛 − 1). Hence
𝜏 =

(︀
#𝐶𝑜

𝑛(𝑛−1)

)︀
−

(︀
#𝐼𝑛

𝑛(𝑛−1)

)︀
. In case #In is zero, 𝜏 = +1 (all pairs are equivalently

oriented); inversely, in case #Co is zero, 𝜏 = −1 (all pairs are differently oriented).

Noticing that #𝐶𝑜
𝑛(𝑛−1)

= 1 − #𝐼𝑛
𝑛(𝑛−1)

, and recalling that the bipolar-valued negation is
operated by changing the sign of the characteristic value, Kendall ’s original tau definition
implemented in fact the bipolar-valued negation of the non equivalence of two linear
orders:

𝜏 = 1− 2
#𝐼𝑛

𝑛(𝑛− 1)
= −

(︀
2

#𝐼𝑛

𝑛(𝑛− 1)
− 1

)︀
= 2

#𝐶𝑜

𝑛(𝑛− 1)
− 1,

i.e. the normalized majority margin of equivalently oriented irreflexive pairs.

Let R1 and R2 be two random crisp relations defined on a same set of 5 alternatives.
We may compute Kendall’s tau index as follows.

Listing 3.1: Crisp Relational Equivalence Digraph

1 >>> from digraphs import *

2 >>> R1 = RandomDigraph(order=5,Bipolar=True)

3 >>> R2 = RandomDigraph(order=5,Bipolar=True)

4 >>> E = EquivalenceDigraph(R1,R2)

5 >>> E.showRelationTable(ReflexiveTerms=False)

6 * ---- Relation Table -----

7 r(<=>)| 'a1' 'a2' 'a3' 'a4' 'a5'

8 ------|---

9 'a1' | - -1.00 1.00 -1.00 1.00

10 'a2' | -1.00 - -1.00 1.00 -1.00

11 'a3' | -1.00 -1.00 - 1.00 1.00

12 'a4' | -1.00 1.00 -1.00 - 1.00

13 'a5' | -1.00 1.00 -1.00 1.00 -

14 Valuation domain: [-1.00;1.00]

15 >>> E.correlation

16 {'correlation': -0.1, 'determination': 1.0}

In the table of the equivalence relation (𝑅1 ⇔ 𝑅2) above (see Listing 3.1 Lines 9-13),
we observe that the normalized majority margin of equivalent versus non equivalent
irreflexive pairs amounts to (9 - 11)/20 = -0.1, i.e. the value of Kendall’s tau index in
this plainly determined crisp case (see Listing 3.1 Line 16).

What happens now with more or less determined and even partially indeterminate rela-
tions ? May we proceed in a similar way ?

70

Bipolar-valued relational equivalence

Let us now consider two randomly bipolar-valued digraphs R1 and R2 of order five.

Listing 3.2: Two Random Bipolar-valued Digraphs

1 >>> R1 = RandomValuationDigraph(order=5,seed=1)

2 >>> R1.showRelationTable(ReflexiveTerms=False)

3 * ---- Relation Table -----

4 r(R1)| 'a1' 'a2' 'a3' 'a4' 'a5'

5 ------|---

6 'a1' | - -0.66 0.44 0.94 -0.84

7 'a2' | -0.36 - -0.70 0.26 0.94

8 'a3' | 0.14 0.20 - 0.66 -0.04

9 'a4' | -0.48 -0.76 0.24 - -0.94

10 'a5' | -0.02 0.10 0.54 0.94 -

11 Valuation domain: [-1.00;1.00]

12 >>> R2 = RandomValuationDigraph(order=5,seed=2)

13 >>> R2.showRelationTable(ReflexiveTerms=False)

14 * ---- Relation Table -----

15 r(R2)| 'a1' 'a2' 'a3' 'a4' 'a5'

16 ------|---

17 'a1' | - -0.86 -0.78 -0.80 -0.08

18 'a2' | -0.58 - 0.88 0.70 -0.22

19 'a3' | -0.36 0.54 - -0.46 0.54

20 'a4' | -0.92 0.48 0.74 - -0.60

21 'a5' | 0.10 0.62 0.00 0.84 -

22 Valuation domain: [-1.00;1.00]

We may notice in the relation tables shown above that 9 pairs, like (a1,a2) or (a3,a2)
for instance, appear equivalently oriented (see Listing 3.2 Lines 6,17 or 8,19). The
EquivalenceDigraph class implements this relational equivalence relation between di-
graphs R1 and R2 (see Listing 3.3).

Listing 3.3: Bipolar-valued Equivalence Digraph

1 >>> eq = EquivalenceDigraph(R1,R2)

2 >>> eq.showRelationTable(ReflexiveTerms=False)

3 * ---- Relation Table -----

4 r(<=>)| 'a1' 'a2' 'a3' 'a4' 'a5'

5 ------|---

6 'a1' | - 0.66 -0.44 -0.80 0.08

7 'a2' | 0.36 - -0.70 0.26 -0.22

8 'a3' | -0.14 0.20 - -0.46 -0.04

9 'a4' | 0.48 -0.48 0.24 - 0.60

10 'a5' | -0.02 0.10 0.00 0.84 -

11 Valuation domain: [-1.00;1.00]

In our bipolar-valued epistemic logic, logical disjunctions and conjunctions are imple-

71

mented as max, respectively min operators. Notice also that the logical equivalence
(𝑅1 ⇔ 𝑅2) corresponds to a double implication (𝑅1 ⇒ 𝑅) ∧ (𝑅2 ⇒ 𝑅1) and that the
implication (𝑅1 ⇒ 𝑅2) is logically equivalent to the disjunction (¬𝑅1 ∨𝑅2).

When 𝑟(𝑥𝑅1 𝑦) and 𝑟(𝑥𝑅2 𝑦) denote the bipolar-valued characteristic values of relation
R1, resp. R2, we may hence compute as follows a majority margin 𝑀(𝑅1 ⇔ 𝑅2) between
equivalently and not equivalently oriented irreflexive pairs (x,y).

𝑀(𝑅1 ⇔ 𝑅2) =∑︀
(�̸�=𝑦)

[︁
min

(︁
max

(︀
− 𝑟(𝑥𝑅1 𝑦), 𝑟(𝑥𝑅2 𝑦)

)︀
,max

(︀
− 𝑟(𝑥𝑅2 𝑦), 𝑟(𝑥𝑅1 𝑦)

)︀)︁]︁
.

𝑀(𝑅1 ⇔ 𝑅2) is thus given by the sum of the non reflexive terms of the relation table of
eq, the relation equivalence digraph computed above (see Listing 3.3).

In the crisp case, 𝑀(𝑅1 ⇔ 𝑅2) is now normalized with the maximum number of possible
irreflexive pairs, namely n(n-1). In a generalized r -valued case, the maximal possible
equivalence majority margin M corresponds to the sum D of the conjoint determina-
tions of (𝑥𝑅1 𝑦) and (𝑥𝑅2 𝑦) (see [BIS-2012p]).

𝐷 =
∑︀

𝑥 ̸=𝑦 min
[︁
𝑎𝑏𝑠

(︀
𝑟(𝑥𝑅1 𝑦)

)︀
, 𝑎𝑏𝑠

(︀
𝑟(𝑥𝑅2 𝑦

)︀]︁
.

Thus, we obtain in the general r -valued case:

𝜏(𝑅1, 𝑅2) = 𝑀(𝑅1⇔𝑅2)
𝐷

.

𝜏(𝑅1, 𝑅2) corresponds thus to a classical ordinal correlation index, but restricted to the
conjointly determined parts of the given relations R1 and R2. In the limit case of two
crisp linear orders, D equals n(n-1), i.e. the number of irreflexive pairs, and we recover
hence Kendall ‘s original tau index definition.

It is worthwhile noticing that the ordinal correlation index 𝜏(𝑅1, 𝑅2) we obtain above
corresponds to the ratio of

𝑟(𝑅1 ⇔ 𝑅2) = 𝑀(𝑅1⇔𝑅2)
𝑛(𝑛−1)

: the normalized majority margin of the pairwise
relational equivalence statements, also called valued ordinal correlation, and

𝑑 = 𝐷
𝑛(𝑛−1)

: the normalized determination of the corresponding pairwise
relational equivalence statements, in fact the determinateness of the relational
equivalence digraph.

We have thus successfully out-factored the determination effect from the correlation
effect. With completely determined relations, 𝜏(𝑅1, 𝑅2) = 𝑟(𝑅1 ⇔ 𝑅2). By convention,
we set the ordinal correlation with a completely indeterminate relation, i.e. when D =
0, to the indeterminate correlation value 0.0. With uniformly chosen random r -valued
relations, the expected tau index is 0.0, denoting in fact an indeterminate correlation.
The corresponding expected normalized determination d is about 0.333 (see [BIS-2012p]).

We may verify these relations with help of the corresponding equivalence digraph eq (see
Listing 3.4).

72

Listing 3.4: Computing the Ordinal Correlation Index
from the Equivalence Digraph

1 >>> eq = EquivalenceDigraph(R1,R2)

2 >>> M = Decimal('0'); D = Decimal('0')

3 >>> n2 = eq.order*(eq.order - 1)

4 >>> for x in eq.actions:

5 ... for y in eq.actions:

6 ... if x != y:

7 ... M += eq.relation[x][y]

8 ... D += abs(eq.relation[x][y])

9 >>> print('r(R1<=>R2) = %+.3f , d = %.3f , tau = %+.3f ' % (M/n2,D/n2,M/D))

10

11 r(R1<=>R2) = +0.026, d = 0.356, tau = +0.073

In general we simply use the computeOrdinalCorrelation() method which renders a
dictionary with a ‘correlation’ (tau) and a ‘determination’ (d) attribute. We may recover
r(<=>) by multiplying tau with d (see Listing 3.5 Line 4).

Listing 3.5: Directly Computing the Ordinal Correlation
Index

1 >>> corrR1R2 = R1.computeOrdinalCorrelation(R2)

2 >>> tau = corrR1R2['correlation']

3 >>> d = corrR1R2['determination']

4 >>> r = tau * d

5 >>> print('tau(R1,R2) = %+.3f , d = %.3f ,\

6 ... r(R1<=>R2) = %+.3f ' % (tau, d, r))

7

8 tau(R1,R2) = +0.073, d = 0.356, r(R1<=>R2) = +0.026

We provide for convenience a direct showCorrelation() method:

1 >>> corrR1R2 = R1.computeOrdinalCorrelation(R2)

2 >>> R1.showCorrelation(corrR1R2)

3 Correlation indexes:

4 Extended Kendall tau : +0.073

5 Epistemic determination : 0.356

6 Bipolar-valued equivalence : +0.026

We may now illustrate the quality of the global ranking of the movies shown with the
heat map in Fig. 1.2.

73

Fitness of ranking heuristics

We reconsider the bipolar-valued outranking digraph g modelling the pairwise global ‘at
least as well rated as ’ relation among the 25 movies seen above (see Listing 3.6).

Listing 3.6: Global Movies Outranking Digraph

1 >>> g = BipolarOutrankingDigraph(t,Normalized=True)

2 *------- Object instance description ------*

3 Instance class : BipolarOutrankingDigraph

4 Instance name : rel_grafittiPerfTab.xml

5 # Actions : 25

6 # Criteria : 15

7 Size : 390

8 Determinateness : 65%

9 Valuation domain : {'min': Decimal('-1.0'),

10 'med': Decimal('0.0'),

11 'max': Decimal('1.0'),}

12 >>> g.computeCoSize()

13 188

Out of the 25 x 24 = 600 irreflexive movie pairs, digraph g contains 390 positively
validated, 188 positively invalidated, and 22 indeterminate outranking situations (see the
zero-valued cells in Fig. 1.4).

Let us now compute the normalized majority margin r(<=>) of the equivalence between
the marginal critic’s pairwise ratings and the global Net-Flows ranking shown in the
ordered heat map (see Fig. 1.2).

Listing 3.7: Marginal Criterion Correlations with global
NetFlows Ranking

1 >>> from linearOrders import NetFlowsOrder

2 >>> nf = NetFlowsOrder(g)

3 >>> nf.netFlowsRanking

4 ['mv_QS', 'mv_RR', 'mv_DG', 'mv_NP', 'mv_HN', 'mv_HS', 'mv_SM',

5 'mv_JB', 'mv_PE', 'mv_FC', 'mv_TP', 'mv_CM', 'mv_DF', 'mv_TM',

6 'mv_DJ', 'mv_AL', 'mv_RG', 'mv_MB', 'mv_GH', 'mv_HP', 'mv_BI',

7 'mv_DI', 'mv_FF', 'mv_GG', 'mv_TF']

8 >>> for i,item in enumerate(\

9 ... g.computeMarginalVersusGlobalRankingCorrelations(\

10 ... nf.netFlowsRanking,ValuedCorrelation=True)):\

11 ... print('r(%s <=>nf) = %+.3f ' % (item[1],item[0]))

12

13 r(JH<=>nf) = +0.500

14 r(JPT<=>nf) = +0.430

15 r(AP<=>nf) = +0.323

16 r(DR<=>nf) = +0.263

17 r(MR<=>nf) = +0.247

(continues on next page)

74

(continued from previous page)

18 r(VT<=>nf) = +0.227

19 r(GS<=>nf) = +0.160

20 r(CS<=>nf) = +0.140

21 r(SJ<=>nf) = +0.137

22 r(RR<=>nf) = +0.133

23 r(TD<=>nf) = +0.110

24 r(CF<=>nf) = +0.110

25 r(SF<=>nf) = +0.103

26 r(AS<=>nf) = +0.080

27 r(FG<=>nf) = +0.027

In Listing 3.7 (see Lines 13-27), we recover above the relational equivalence characteristic
values shown in the third row of the table in Fig. 1.2. The global Net-Flows ranking
represents obviously a rather balanced compromise with respect to all movie critics’
opinions as there appears no valued negative correlation with anyone of them. The Net-
Flows ranking apparently takes also correctly in account that the journalist JH, a locally
renowned movie critic, shows a higher significance weight (see Line 13).

The ordinal correlation between the global Net-Flows ranking and the digraph g may be
furthermore computed as follows:

Listing 3.8: Correlation between outrankings global Net-
Flows Ranking

1 >>> corrgnf = g.computeOrdinalCorrelation(nf)

2 >>> g.showCorrelation(corrgnf)

3 Correlation indexes:

4 Extended Kendall tau : +0.780

5 Epistemic determination : 0.300

6 Bipolar-valued equivalence : +0.234

We notice in Listing 3.8 Line 4 that the ordinal correlation tau(g,nf) index between
the Net-Flows ranking nf and the determined part of the outranking digraph g is quite
high (+0.78). Due to the rather high number of missing data, the r -valued relational
equivalence between the nf and the g digraph, with a characteristics value of only +0.234,
may be misleading. Yet, +0.234 still corresponds to an epistemic majority support of
nearly 62% of the movie critics’ rating opinions.

It would be interesting to compare similarly the correlations one may obtain with other
global ranking heuristics, like the Copeland or the Kohler ranking rule.

75

Illustrating preference divergences

The valued relational equivalence index gives us a further measure for studying how
divergent appear the rating opinions expressed by the movie critics.

Fig. 3.1: Pairwise valued correlation of movie critics

It is remarkable to notice in the criteria correlation matrix (see Fig. 3.1) that, due to the
quite numerous missing data, all pairwise valued ordinal correlation indexes r(x<=>y)
appear to be of low value, except the diagonal ones. These reflexive indexes r(x<=>x)
would trivially all amount to +1.0 in a plainly determined case. Here they indicate a re-
flexive normalized determination score d, i.e. the proportion of pairs of movies each critic
did evaluate. Critic JPT (the editor of the Graffiti magazine), for instance, evaluated all
but one (d = 24*23/600 = 0.92), whereas critic FG evaluated only 10 movies among the
25 in discussion (d = 10*9/600 = 0.15).

To get a picture of the actual divergence of rating opinions concerning jointly seen pairs
of movies, we may develop a Principal Component Analysis (2) of the corresponding tau
correlation matrix. The 3D plot of the first 3 principal axes is shown in Fig. 3.2.

>>> g.export3DplotOfCriteriaCorrelation(ValuedCorrelation=False)

2 The 3D PCA plot method requires a running R statistics software (https://www.r-project.org/)
installation and the Calmat matrix calculator (see the calmat directory in the Digraph3 ressources)

76

https://www.r-project.org/

Fig. 3.2: 3D PCA plot of the criteria ordinal correlation matrix

The first 3 principal axes support together about 70% of the total inertia. Most eccentric
and opposed in their respective rating opinions appear, on the first principal axis with
27.2% inertia, the conservative daily press against labour and public press. On the second
principal axis with 23.7.7% inertia, it is the people press versus the cultural critical press.
And, on the third axis with still 19.3% inertia, the written media appear most opposed
to the radio media.

Exploring the better rated and the as well as rated opinions

In order to furthermore study the quality of a ranking result, it may be interesting to
have a separate view on the asymmetric and symmetric parts of the ‘at least as well rated
as ’ opinions (see the tutorial on Manipulating Digraph objects).

Let us first have a look at the pairwise asymmetric part, namely the ‘better rated than’
and ‘less well rated than’ opinions of the movie critics.

>>> ag = AsymmetricPartialDigraph(g)

>>> ag.showHTMLRelationTable(actionsList=g.computeNetFlowsRanking(),

→˓ndigits=0)

77

Fig. 3.3: Asymmetric part of graffiti07 digraph

We notice here that the Net-Flows ranking rule inverts in fact just three ‘less well ranked
than’ opinions and four ‘better ranked than’ ones. A similar look at the symmetric part,
the pairwise ‘as well rated as ’ opinions, suggests a preordered preference structure in
several equivalently rated classes.

>>> sg = SymmetricPartialDigraph(g)

>>> sg.showHTMLRelationTable(actionsList=g.computeNetFlowsRanking(),

→˓ndigits=0)

Fig. 3.4: Symmetric part of graffiti07 digraph

Such a preordering of the movies may, for instance, be computed with the
computeRankingByChoosing() method, where we iteratively extract dominant kernels

78

-remaining first choices- and absorbent kernels -remaining last choices- (see the tutorial
on Computing Digraph Kernels (page 79)). We operate therefore on the asymmetric ‘bet-
ter rated than’, i.e. the codual (3) of the ‘at least as well rated as ’ opinions (see Listing
3.9 Line 2).

Listing 3.9: Ranking by choosing the Grafitti movies

1 >>> from transitiveDigraphs import RankingByChoosingDigraph

2 >>> rbc = RankingByChoosingDigraph(g,CoDual=True)

3 >>> rbc.showRankingByChoosing()

4 Ranking by Choosing and Rejecting

5 1st First Choice ['mv_QS']

6 2nd First Choice ['mv_DG', 'mv_FC', 'mv_HN', 'mv_HS', 'mv_NP',

7 'mv_PE', 'mv_RR', 'mv_SM']

8 3rd First Choice ['mv_CM', 'mv_JB', 'mv_TM']

9 4th First Choice ['mv_AL', 'mv_TP']

10 4th Last Choice ['mv_AL', 'mv_TP']

11 3rd Last Choice ['mv_GH', 'mv_MB', 'mv_RG']

12 2nd Last Choice ['mv_DF', 'mv_DJ', 'mv_FF', 'mv_GG']

13 1st Last Choice ['mv_BI', 'mv_DI', 'mv_HP', 'mv_TF']

Back to Content Table (page 1)

3.2 On computing digraph kernels

� What is a graph kernel ? (page 79)

� Initial and terminal kernels (page 84)

� Kernels in lateralized digraphs (page 89)

� Computing good and bad choice recommendations (page 92)

� Tractability (page 97)

What is a graph kernel ?

We call choice in a graph, respectively a digraph, a subset of its vertices, resp. of its
nodes or actions. A choice Y is called internally stable or independent when there
exist no links (edges) or relations (arcs) between its members. Furthermore, a choice Y
is called externally stable when for each vertex, node or action x not in Y, there exists
at least a member y of Y such that x is linked or related to y. Now, an internally and
externally stable choice is called a kernel.

3 A kernel in a digraph g is a clique in the dual digraph -g.

79

A first trivial example is immediately given by the maximal independent vertices sets
(MISs) of the n-cycle graph (see tutorial on computing isomorphic choices). Indeed, each
MIS in the n-cycle graph is by definition independent, i.e. internally stable, and each non
selected vertex in the n-cycle graph is in relation with either one or even two members of
the MIS. See, for instance, the four non isomorphic MISs of the 12-cycle graph as shown
in MISc12.

In all graph or symmetric digraph, the maximality condition imposed on the internal
stability is equivalent to the external stability condition. Indeed, if there would exist a
vertex or node not related to any of the elements of a choice, then we may safely add this
vertex or node to the given choice without violating its internal stability. All kernels must
hence be maximal independent choices. In fact, in a topological sense, they correspond
to maximal holes in the given graph.

We may illustrate this coincidence between MISs and kernels in graphs and symmetric
digraphs with the following random 3-regular graph instance (see Fig. 3.5).

1 >>> from graphs import RandomRegularGraph

2 >>> g = RandomRegularGraph(order=12,degree=3,seed=100)

3 >>> g.exportGraphViz('random3RegularGraph')

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to random3RegularGraph.dot

6 fdp -Tpng random3RegularGraph.dot -o random3RegularGraph.png

Fig. 3.5: A random 3-regular graph instance

A random MIS in this graph may be computed for instance by using the MISModel class.

1 >>> from graphs import MISModel

2 >>> mg = MISModel(g)

3 Iteration: 1

4 Running a Gibbs Sampler for 660 step !

5 {'a06', 'a02', 'a12', 'a10'} is maximal !

(continues on next page)

80

(continued from previous page)

6 >>> mg.exportGraphViz('random3RegularGraph_mis')

7 *---- exporting a dot file for GraphViz tools ---------*

8 Exporting to random3RegularGraph-mis.dot

9 fdp -Tpng random3RegularGraph-mis.dot -o random3RegularGraph-mis.png

Fig. 3.6: A random MIS colored in the random 3-regular graph

It is easily verified in Fig. 3.6 above, that the computed MIS renders indeed a valid kernel
of the given graph. The complete set of kernels of this 3-regular graph instance coincides
hence with the set of its MISs.

1 >>> g.showMIS()

2 *--- Maximal Independent Sets ---*

3 ['a01', 'a02', 'a03', 'a07']

4 ['a01', 'a04', 'a05', 'a08']

5 ['a04', 'a05', 'a08', 'a09']

6 ['a01', 'a04', 'a05', 'a10']

7 ['a04', 'a05', 'a09', 'a10']

8 ['a02', 'a03', 'a07', 'a12']

9 ['a01', 'a03', 'a07', 'a11']

10 ['a05', 'a08', 'a09', 'a11']

11 ['a03', 'a07', 'a11', 'a12']

12 ['a07', 'a09', 'a11', 'a12']

13 ['a08', 'a09', 'a11', 'a12']

14 ['a04', 'a05', 'a06', 'a08']

15 ['a04', 'a05', 'a06', 'a10']

16 ['a02', 'a04', 'a06', 'a10']

17 ['a02', 'a03', 'a06', 'a12']

18 ['a02', 'a06', 'a10', 'a12']

19 ['a01', 'a02', 'a04', 'a07', 'a10']

(continues on next page)

81

(continued from previous page)

20 ['a02', 'a04', 'a07', 'a09', 'a10']

21 ['a02', 'a07', 'a09', 'a10', 'a12']

22 ['a01', 'a03', 'a05', 'a08', 'a11']

23 ['a03', 'a05', 'a06', 'a08', 'a11']

24 ['a03', 'a06', 'a08', 'a11', 'a12']

25 number of solutions: 22

26 cardinality distribution

27 card.: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

28 freq.: [0, 0, 0, 0, 16, 6, 0, 0, 0, 0, 0, 0, 0]

29 execution time: 0.00045 sec.

30 Results in self.misset

31 >>> g.misset

32 [frozenset({'a02', 'a01', 'a07', 'a03'}),

33 frozenset({'a04', 'a01', 'a08', 'a05'}),

34 frozenset({'a09', 'a04', 'a08', 'a05'}),

35 ...

36 ...

37 frozenset({'a06', 'a02', 'a12', 'a10'}),

38 frozenset({'a06', 'a11', 'a08', 'a03', 'a05'}),

39 frozenset({'a03', 'a06', 'a11', 'a12', 'a08'})]

We cannot resist in looking in this 3-regular graph for non isomorphic kernels (MISs,
see previous tutorial). To do so we must first, convert the given graph instance into a
digraph instance. Then, compute its automorphism generators, and finally, identify the
isomorphic kernel orbits.

1 >>> dg = g.graph2Digraph()

2 >>> dg.showMIS()

3 *--- Maximal independent choices ---*

4 ...

5 ['a06', 'a02', 'a12', 'a10']

6 ...

7 number of solutions: 22

8 cardinality distribution

9 card.: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

10 freq.: [0, 0, 0, 0, 16, 6, 0, 0, 0, 0, 0, 0, 0]

11 execution time: 0.00080 sec.

12 Results in self.misset

13 >>> dg.automorphismGenerators()

14 *----- saving digraph in nauty dre format -------------*

15 ...

16 # automorphisms extraction from dre file #

17 # Using input file: randomRegularGraph.dre

18 echo '<randomRegularGraph.dre -m p >randomRegularGraph.auto x' |␣

→˓dreadnaut

19 # permutation = 1['1', '11', '7', '5', '4', '9', '3', '10', '6', '8',

(continues on next page)

82

(continued from previous page)

→˓'2', '12']

20 >>> dg.showOrbits(dg.misset)

21 *--- Isomorphic reduction of choices

22 ...

23 current representative: frozenset({'a09', 'a11', 'a12', 'a08'})

24 length : 4

25 number of isomorph choices 2

26 isormorph choices

27 ['a06', 'a02', 'a12', 'a10'] # <<== the random MIS shown above

28 ['a09', 'a11', 'a12', 'a08']

29 ...

30 *---- Global result ----

31 Number of choices: 22

32 Number of orbits : 11

33 Labelled representatives:

34 ...

35 ['a09', 'a11', 'a12', 'a08']

36 ...

In our random 3-regular graph instance (see Fig. 3.5), we may thus find eleven non
isomorphic kernels with orbit sizes equal to two. We illustrate below the isomorphic twin
of the random MIS example shown in Fig. 3.6 .

Fig. 3.7: Two isomorphic kernels of the random 3-regular graph instance

All graphs and symmetric digraphs admit MISs, hence also kernels.

It is worthwhile noticing that themaximal matchings of a graph correspond bijectively
to its line graph’s kernels (see the LineGraph class).

1 >>> from graphs import CycleGraph

2 >>> c8 = CycleGraph(order=8)

3 >>> maxMatching = c8.computeMaximumMatching()

(continues on next page)

83

(continued from previous page)

4 >>> c8.exportGraphViz(fileName='maxMatchingcycleGraph',

5 ... matching=maxMatching)

6 *---- exporting a dot file for GraphViz tools ---------*

7 Exporting to maxMatchingcyleGraph.dot

8 Matching: {frozenset({'v1', 'v2'}), frozenset({'v5', 'v6'}),

9 frozenset({'v3', 'v4'}), frozenset({'v7', 'v8'}) }

10 circo -Tpng maxMatchingcyleGraph.dot -o maxMatchingcyleGraph.png

Fig. 3.8: Perfect maximum matching in the 8-cycle graph

In the context of digraphs, i.e. oriented graphs, the kernel concept gets much richer and
separates from the symmetric MIS concept.

Initial and terminal kernels

In an oriented graph context, the internal stability condition of the kernel concept re-
mains untouched; however, the external stability condition gets indeed split up by the
orientation into two lateral cases:

1. A dominant stability condition, where each non selected node is dominated by at
least one member of the kernel;

2. An absorbent stability condition, where each non selected node is absorbed by at
least one member of the kernel.

A both internally and dominant, resp. absorbent stable choice is called a dominant or
initial, resp. an absorbent or terminal kernel. From a topological perspective, the
initial kernel concept looks from the outside of the digraph into its interior, whereas the
terminal kernel looks from the interior of a digraph toward its outside. From an algebraic

84

perspective, the initial kernel is a prefix operand, and the terminal kernel is a postfix
operand in the kernel equation systems (see Digraph3 advanced topic on bipolar-valued
kernel membership characteristics).

Furthermore, as the kernel concept involves conjointly a positive logical refutation
(the internal stability) and a positive logical affirmation (the external stability), it
appeared rather quickly necessary in our operational developments to adopt a bipolar
characteristic [-1,1] valuation domain, modelling negation by change of numerical sign
and including explicitly a third median logical value (0) expressing logical indetermi-
nateness (neither positive, nor negative, see [?] and [?]).

In such a bipolar-valued context, we call prekernel a choice which is externally stable
and for which the internal stability condition is valid or indeterminate. We say that
the independence condition is in this case only weakly validated. Notice that all kernels
are hence prekernels, but not vice-versa.

In graphs or symmetric digraphs, where there is essentially no apparent ‘ laterality ‘, all
prekernels are initial and terminal at the same time. They correspond to what we call
holes in the graph. A universal example is given by the complete digraph.

1 >>> from digraphs import CompleteDigraph

2 >>> u = CompleteDigraph(order=5)

3 >>> u

4 *------- Digraph instance description ------*

5 Instance class : CompleteDigraph

6 Instance name : complete

7 Digraph Order : 5

8 Digraph Size : 20

9 Valuation domain : [-1.00 ; 1.00]

10 ---------------------------------

11 >>> u.showPreKernels()

12 *--- Computing preKernels ---*

13 Dominant kernels :

14 ['1'] independence: 1.0; dominance : 1.0; absorbency : 1.0

15 ['2'] independence: 1.0; dominance : 1.0; absorbency : 1.0

16 ['3'] independence: 1.0; dominance : 1.0; absorbency : 1.0

17 ['4'] independence: 1.0; dominance : 1.0; absorbency : 1.0

18 ['5'] independence: 1.0; dominance : 1.0; absorbency : 1.0

19 Absorbent kernels :

20 ['1'] independence: 1.0; dominance : 1.0; absorbency : 1.0

21 ['2'] independence: 1.0; dominance : 1.0; absorbency : 1.0

22 ['3'] independence: 1.0; dominance : 1.0; absorbency : 1.0

23 ['4'] independence: 1.0; dominance : 1.0; absorbency : 1.0

24 ['5'] independence: 1.0; dominance : 1.0; absorbency : 1.0

25 *----- statistics -----

26 graph name: complete

27 number of solutions

28 dominant kernels : 5

29 absorbent kernels: 5

(continues on next page)

85

./pearls.html#bipolar-valued-kernel-membership-characteristic-vectors
./pearls.html#bipolar-valued-kernel-membership-characteristic-vectors

(continued from previous page)

30 cardinality frequency distributions

31 cardinality : [0, 1, 2, 3, 4, 5]

32 dominant kernel : [0, 5, 0, 0, 0, 0]

33 absorbent kernel: [0, 5, 0, 0, 0, 0]

34 Execution time : 0.00004 sec.

35 Results in sets: dompreKernels and abspreKernels.

In a complete digraph, each single node is indeed both an initial and a terminal prekernel
candidate and there is no definite begin or end of the digraph to be detected. Laterality
is here entirely relative to a specific singleton chosen as reference point of view. The same
absence of laterality is apparent in two other universal digraph models, the empty and
the indeterminate digraph.

1 >>> ed = EmptyDigraph(order=5)

2 >>> ed.showPreKernels()

3 *--- Computing preKernels ---*

4 Dominant kernel :

5 ['1', '2', '3', '4', '5']

6 independence : 1.0

7 dominance : 1.0

8 absorbency : 1.0

9 Absorbent kernel :

10 ['1', '2', '3', '4', '5']

11 independence : 1.0

12 dominance : 1.0

13 absorbency : 1.0

14 ...

In the empty digraph, the whole set of nodes gives indeed at the same time the unique
initial and terminal prekernel. Similarly, for the indeterminate digraph.

1 >>> from digraphs import IndeterminateDigraph

2 >>> id = IndeterminateDigraph(order=5)

3 >>> id.showPreKernels()

4 *--- Computing preKernels ---*

5 Dominant prekernel :

6 ['1', '2', '3', '4', '5']

7 independence : 0.0 # <<== indeterminate

8 dominance : 1.0

9 absorbency : 1.0

10 Absorbent prekernel :

11 ['1', '2', '3', '4', '5']

12 independence : 0.0 # <<== indeterminate

13 dominance : 1.0

14 absorbency : 1.0

Both these results make sense, as in a completely empty or indeterminate digraph, there

86

is no interior of the digraph defined, only a border which is hence at the same time an
initial and terminal prekernel. Notice however, that in the latter indeterminate case, the
complete set of nodes verifies only weakly the internal stability condition (see above).

Other common digraph models, although being clearly oriented, may show nevertheless
no apparent laterality, like odd chordless circuits, i.e. holes surrounded by an oriented
cycle -a circuit- of odd length. They do not admit in fact any initial or terminal prekernel.

1 >>> from digraphs import CirculantDigraph

2 >>> c5 = CirculantDigraph(order=5,circulants=[1])

3 >>> c5.showPreKernels()

4 *----- statistics -----

5 digraph name: c5

6 number of solutions

7 dominant prekernels : 0

8 absorbent prekernels: 0

Chordless circuits of even length 2 x k, with k > 1, contain however two isomorphic
prekernels of cardinality k which qualify conjointly as initial and terminal candidates.

1 >>> c6 = CirculantDigraph(order=6,circulants=[1])

2 >>> c6.showPreKernels()

3 *--- Computing preKernels ---*

4 Dominant preKernels :

5 ['1', '3', '5'] independence: 1.0, dominance: 1.0, absorbency: 1.0

6 ['2', '4', '6'] independence: 1.0, dominance: 1.0, absorbency: 1.0

7 Absorbent preKernels :

8 ['1', '3', '5'] independence: 1.0, dominance: 1.0, absorbency: 1.0

9 ['2', '4', '6'] independence: 1.0, dominance: 1.0, absorbency: 1.0

Chordless circuits of even length may thus be indifferently oriented along two opposite
directions. Notice by the way that the duals of all chordless circuits of odd or even
length, i.e. filled circuits also called anti-holes (see Fig. 3.9), never contain any potential
prekernel candidates.

1 >>> dc6 = -c6 # dc6 = DualDigraph(c6)

2 >>> dc6.showPreKernels()

3 *----- statistics -----

4 graph name: dual_c6

5 number of solutions

6 dominant prekernels : 0

7 absorbent prekernels: 0

8 >>> dc6.exportGraphViz(fileName='dualChordlessCircuit')

9 *---- exporting a dot file for GraphViz tools ---------*

10 Exporting to dualChordlessCircuit.dot

11 circo -Tpng dualChordlessCircuit.dot -o dualChordlessCircuit.png

87

Fig. 3.9: The dual of the chordless 6-circuit

We call weak, a chordless circuit with indeterminate inner part. The CirculantDigraph
class provides a parameter for constructing such a kind of weak chordless circuits.

1 >>> c6 = CirculantDigraph(order=6, circulants=[1],

2 ... IndeterminateInnerPart=True)

It is worth noticing that the dual version of a weak circuit corresponds to its converse
version, i.e. -c6 = ~c6 (see Fig. 3.10).

1 >>> (-c6).exportGraphViz()

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to dual_c6.dot

4 circo -Tpng dual_c6.dot -o dual_c6.png

5 >>> (~c6).exportGraphViz()

6 *---- exporting a dot file for GraphViz tools ---------*

7 Exporting to converse_c6.dot

8 circo -Tpng converse_c6.dot -o converse_c6.png

88

Fig. 3.10: Dual and converse of the weak 6-circuit

It immediately follows that weak chordless circuits are part of the class of digraphs that
are invariant under the codual transform, cn = - (~ cn) = ~ (-cn).

Kernels in lateralized digraphs

Humans do live in an apparent physical space of plain transitive lateral orientation,
fully empowered in finite geometrical 3D models with linear orders, where first, resp.
last ranked, nodes deliver unique initial, resp. terminal, kernels. Similarly, in finite
preorders, the first, resp. last, equivalence classes deliver the unique initial, resp. unique
terminal, kernels. More generally, in finite partial orders, i.e. asymmetric and transitive
digraphs, topological sort algorithms will easily reveal on the first, resp. last, level all
unique initial, resp. terminal, kernels.

In genuine random digraphs, however, we may need to check for each of its MISs, whether
one, both, or none of the lateralized external stability conditions may be satisfied. Con-
sider, for instance, the following random digraph instance of order 7 and generated with
an arc probability of 30%.

1 >>> from randomDigraphs import RandomDigraph

2 >>> rd = RandomDigraph(order=7,arcProbability=0.3,seed=5)

3 >>> rd.exportGraphViz('randomLaterality')

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to randomLaterality.dot

6 dot -Grankdir=BT -Tpng randomLaterality.dot -o randomLaterality.png

89

Fig. 3.11: A random digraph instance of order 7 and arc probability 0.3

The random digraph shown in Fig. 3.11 above has no apparent special properties, except
from being connected (see Line 3 below).

1 >>> rd.showComponents()

2 *--- Connected Components ---*

3 1: ['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7']

4 >>> rd.computeSymmetryDegree(Comments=True,InPercents=True)

5 Symmetry degree (%) of digraph <randomDigraph>:

6 #arcs x>y: 14, #symmetric: 1, #asymmetric: 13

7 #symmetric/#arcs = 7.1

8 >>> rd.computeChordlessCircuits()

9 [] # no chordless circuits detected

10 >>> rd.computeTransitivityDegree(Comments=True,InPercents=True)

11 Transitivity degree (%) of graph <randomDigraph>:

12 #triples x>y>z: 23, #closed: 11, #open: 12

13 #closed/#triples = 47.8

The given digraph instance is neither asymmetric (a3 <–> a6) nor symmetric (a2 –> a1,
a1 -/> a2) (see Line 6 above); there are no chordless circuits (see Line 9 above); and, the
digraph is not transitive (a5 -> a2 -> a1, but a5 -/> a1). More than half of the required
transitive closure is missing (see Line 12 above).

90

Now, we know that its potential prekernels must be among its set of maximal independent
choices.

1 >>> rd.showMIS()

2 *--- Maximal independent choices ---*

3 ['a2', 'a4', 'a6']

4 ['a6', 'a1']

5 ['a5', 'a1']

6 ['a3', 'a1']

7 ['a4', 'a3']

8 ['a7']

9 ------

10 >>> rd.showPreKernels()

11 *--- Computing preKernels ---*

12 Dominant preKernels :

13 ['a2', 'a4', 'a6']

14 independence : 1.0

15 dominance : 1.0

16 absorbency : -1.0

17 covering : 0.500

18 ['a4', 'a3']

19 independence : 1.0

20 dominance : 1.0

21 absorbency : -1.0

22 covering : 0.600 # <<==

23 Absorbent preKernels :

24 ['a3', 'a1']

25 independence : 1.0

26 dominance : -1.0

27 absorbency : 1.0

28 covering : 0.500

29 ['a6', 'a1']

30 independence : 1.0

31 dominance : -1.0

32 absorbency : 1.0

33 covering : 0.600 # <<==

34 ...

Among the six MISs contained in this random digraph (see above Lines 3-8) we discover
two initial and two terminal kernels (Lines 12-34). Notice by the way the covering val-
ues (between 0.0 and 1.0) shown by the digraphs.Digraph.showPreKernels() method
(Lines 17, 22, 28 and 33). The higher this value, the more the corresponding kernel can-
didate makes apparent the digraph’s laterality. We may hence redraw the same digraph
in Fig. 3.12 by looking into its interior via the best covering initial kernel candidate: the
dominant choice {‘a3’,’4a’} (coloured in yellow), and looking out of it via the best covered
terminal kernel candidate: the absorbent choice {‘a1’,’a6’} (coloured in blue).

91

1 >>> rd.exportGraphViz(fileName='orientedLaterality',

2 ... bestChoice=set(['a3', 'a4']),

3 ... worstChoice=set(['a1', 'a6']))

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to orientedLaterality.dot

6 dot -Grankdir=BT -Tpng orientedLaterality.dot -o orientedLaterality.png

Fig. 3.12: A random digraph oriented by best covering initial and best covered terminal
kernel

In algorithmic decision theory, initial and terminal prekernels may provide convincing
best, resp. worst, choice recommendations (see tutorial on computing a best choice
recommendation).

Computing good and bad choice recommendations

To illustrate this idea, let us finally compute good and bad choice recommendations in
the following random bipolar-valued outranking digraph.

1 >>> from outrankingDigraphs import *

2 >>> g = RandomBipolarOutrankingDigraph(seed=5)

3 >>> g

4 *------- Object instance description ------*

5 Instance class : RandomBipolarOutrankingDigraph

(continues on next page)

92

(continued from previous page)

6 Instance name : randomOutranking

7 # Actions : 7

8 # Criteria : 7

9 Size : 26

10 Determinateness : 34.275

11 Valuation domain : {'min': -100.0, 'med': 0.0, 'max': 100.0}

12 >>> g.showHTMLPerformanceTableau()

Fig. 3.13: The performance tableau of a random outranking digraph instance

The underlying random performance tableau (see Fig. 3.13) shows the performance grad-
ing of 7 potential decision actions with respect to 7 decision criteria supporting each an
increasing performance scale from 0 to 100. Notice the missing performance data con-
cerning decision actions ‘a2’ and ‘a5’. The resulting strict outranking - i.e. a weighted
majority supported - better than without considerable counter-performance - digraph is
shown in Fig. 3.14 below.

1 >>> gcd = ~(-g) # Codual: the converse of the negation

2 >>> gcd.exportGraphViz(fileName='tutOutRanking')

3 *---- exporting a dot file for GraphViz tools ---------*

4 Exporting to tutOutranking.dot

5 dot -Grankdir=BT -Tpng tutOutranking.dot -o tutOutranking.png

93

Fig. 3.14: A random strict outranking digraph instance

All decision actions appear strictly better performing than action ‘a7’. We call it a
Condorcet loser and it is an evident terminal prekernel candidate. On the other side,
three actions: ‘a1’, ‘a2’ and ‘a4’ are not dominated. They give together an initial prekernel
candidate.

1 >>> gcd.showPreKernels()

2 *--- Computing preKernels ---*

3 Dominant preKernels :

4 ['a1', 'a2', 'a4']

5 independence : 0.00

6 dominance : 6.98

7 absorbency : -48.84

8 covering : 0.667

9 Absorbent preKernels :

10 ['a3', 'a7']

11 independence : 0.00

12 dominance : -74.42

13 absorbency : 16.28

14 covered : 0.800

With such unique disjoint initial and terminal prekernels (see Line 4 and 10), the given
digraph instance is hence clearly lateralized. Indeed, these initial and terminal prekernels
of the codual outranking digraph reveal best, resp. worst, choice recommendations one

94

may formulate on the basis of a given outranking digraph instance.

1 >>> g.showBestChoiceRecommendation()

2 ***********************

3 Rubis best choice recommendation(s) (BCR)

4 (in decreasing order of determinateness)

5 Credibility domain: [-100.00,100.00]

6 === >> potential first choice(s)

7 * choice : ['a1', 'a2', 'a4']

8 independence : 0.00

9 dominance : 6.98

10 absorbency : -48.84

11 covering (%) : 66.67

12 determinateness (%) : 57.97

13 - most credible action(s) = { 'a4': 20.93, 'a2': 20.93, }

14 === >> potential last choice(s)

15 * choice : ['a3', 'a7']

16 independence : 0.00

17 dominance : -74.42

18 absorbency : 16.28

19 covered (%) : 80.00

20 determinateness (%) : 64.62

21 - most credible action(s) = { 'a7': 48.84, }

Notice that solving bipolar-valued kernel equation systems (see Bipolar-Valued Kernels
(page 99) in the Advanced Topics) provides furthermore a positive characterization of
the most credible decision actions in each respective choice recommendation (see Lines
14 and 23 above). Actions ‘a2’ and ‘a4’ are equivalent candidates for a unique best choice,
and action ‘a7’ is clearly confirmed as the last choice.

In Fig. 3.15 below, we orient the drawing of the strict outranking digraph instance with
the help of these first and last choice recommendations.

1 >>> gcd.exportGraphViz(fileName='bestWorstOrientation',

2 ... bestChoice=['a2','a4'],

3 ... worstChoice=['a7'])

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to bestWorstOrientation.dot

6 dot -Grankdir=BT -Tpng bestWorstOrientation.dot -o bestWorstOrientation.

→˓png

95

Fig. 3.15: The strict outranking digraph oriented by its first and last choice recommen-
dations

The gray arrows in Fig. 3.15, like the one between actions ‘a4’ and ‘a1’, represent inde-
terminate preferential situations. Action ‘a1’ appears hence to be rather incomparable
to all the other, except action ‘a7’. It may be interesting to compare this result with
a Copeland ranking of the underlying performance tableau (see the tutorial on ranking
with uncommensurable criteria).

1 >>> g.showHTMLPerformanceHeatmap(colorLevels=5, ndigits=0,

2 ... Correlations=True, rankingRule='Copeland')

Fig. 3.16: heatmap with Copeland ranking of the performance tableau

96

In the resulting linear ranking (see Fig. 3.16), action ‘a4’ is set at first rank, followed
by action ‘a2’. This makes sense as ‘a4’ shows three performances in the first quintile,
whereas ‘a2’ is only partially evaluated and shows only two such excellent performances.
But ‘a4’ also shows a very weak performance in the first quintile. Both decision actions,
hence, don’t show eventually a performance profile that would make apparent a clear
preference situation in favour of one or the other. In this sense, the prekernels based best
choice recommendations may appear more faithful with respect to the actually definite
strict outranking relation than any ‘forced’ linear ranking result as shown in Fig. 3.16
above.

Tractability

Finally, let us give some hints on the tractability of kernel computations. Detecting
all (pre)kernels in a digraph is a famously NP-hard computational problem. Checking
external stability conditions for an independent choice is equivalent to checking its max-
imality and may be done in the linear complexity of the order of the digraph. However,
checking all independent choices contained in a digraph may get hard already for tiny
sparse digraphs of order n > 20 (see [?]). Indeed, the worst case is given by an empty
or indeterminate digraph where the set of all potential independent choices to check is in
fact the power set of the vertices.

1 >>> e = EmptyDigraph(order=20)

2 >>> e.showMIS() # by visiting all 2^20 independent choices

3 *--- Maximal independent choices ---*

4 ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10',

5 '11', '12', '13', '14', '15', '16', '17', '18', '19', '20']

6 number of solutions: 1

7 execution time: 1.47640 sec. # <<== !!!

8 >>> 2**20

9 1048576

Now, there exist more efficient specialized algorithms for directly enumerating MISs and
dominant or absorbent kernels contained in specific digraph models without visiting all
independent choices (see [?]). Alain Hertz provided kindly such a MISs enumeration
algorithm for the Digraph3 project (see showMIS_AH()). When the number of indepen-
dent choices is big compared to the actual number of MISs, like in very sparse or empty
digraphs, the performance difference may be dramatic (see Line 7 above and Line 15
below).

1 >>> e.showMIS_AH() # by visiting only maximal independent choices

2 *-----------------------------------*

3 * Python implementation of Hertz's *

4 * algorithm for generating all MISs *

5 * R.B. version 7(6)-25-Apr-2006 *

6 *-----------------------------------*

7 ===>>> Initial solution :

8 ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10',

(continues on next page)

97

(continued from previous page)

9 '11', '12', '13', '14', '15', '16', '17', '18', '19', '20']

10 *---- results ----*

11 ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10',

12 '11', '12', '13', '14', '15', '16', '17', '18', '19', '20']

13 *---- statistics ----*

14 mis solutions : 1

15 execution time : 0.00026 sec. # <<== !!!

16 iteration history: 1

For more or less dense strict outranking digraphs of modest order, as facing usually in
algorithmic decision theory applications, enumerating all independent choices remains
however in most cases tractable, especially by using a very efficient Python generator
(see independentChoices() below).

1 def independentChoices(self,U):

2 """

3 Generator for all independent choices with associated

4 dominated, absorbed and independent neighborhoods

5 of digraph instance self.

6 Initiate with U = self.singletons().

7 Yields [(independent choice, domnb, absnb, indnb)].

8 """

9 if U == []:

10 yield [(frozenset(),set(),set(),set(self.actions))]

11 else:

12 x = list(U.pop())

13 for S in self.independentChoices(U):

14 yield S

15 if x[0] <= S[0][3]:

16 Sxgamdom = S[0][1] | x[1]

17 Sxgamabs = S[0][2] | x[2]

18 Sxindep = S[0][3] & x[3]

19 Sxchoice = S[0][0] | x[0]

20 Sx = [(Sxchoice,Sxgamdom,Sxgamabs,Sxindep)]

21 yield Sx

And, checking maximality of independent choices via the external stability conditions
during their enumeration (see computePreKernels() below) provides the effective ad-
vantage of computing all initial and terminal prekernels in a single loop (see Line 10 and
[?]).

1 def computePreKernels(self):

2 """

3 computing dominant and absorbent preKernels:

4 Result in self.dompreKernels and self.abspreKernels

5 """

6 actions = set(self.actions)
(continues on next page)

98

(continued from previous page)

7 n = len(actions)

8 dompreKernels = set()

9 abspreKernels = set()

10 for choice in self.independentChoices(self.singletons()):

11 restactions = actions - choice[0][0]

12 if restactions <= choice[0][1]:

13 dompreKernels.add(choice[0][0])

14 if restactions <= choice[0][2]:

15 abspreKernels.add(choice[0][0])

16 self.dompreKernels = dompreKernels

17 self.abspreKernels = abspreKernels

Back to Content Table (page 1)

3.3 Bipolar-valued kernel membership characteristic vectors

� Kernel equation systems (page 99)

� Solving bipolar-valued kernel equation systems (page 100)

Kernel equation systems

Let G(X,R) be a crisp irreflexive digraph defined on a finite set X of nodes and where
R is the corresponding {-1,+1}-valued adjacency matrix. Let Y be the {-1,+1}-valued
membership characteristic (row) vector of a choice in X. When Y satisfies the following
equation system

𝑌 ∘𝑅 = −𝑌 ,

where for all x in X,

(𝑌 ∘𝑅)(𝑥) = max𝑦∈𝑋,𝑥 ̸=𝑦

(︀
min(𝑌 (𝑥), 𝑅(𝑥, 𝑦))

)︀
.

then Y characterises an initial kernel ([SCH-1985p]).

When transposing now the membership characteristic vector Y into a column vector 𝑌 𝑡,
the following equation system

𝑅 ∘ 𝑌 𝑡 = −𝑌 𝑡 ,

makes 𝑌 𝑡 similarly characterise a terminal kernel.

Let us verify this result on a tiny random digraph.

99

1 >>> from digraphs import *

2 >>> g = RandomDigraph(order=3,seed=1)

3 >>> g.showRelationTable()

4 * ---- Relation Table -----

5 R | 'a1' 'a2' 'a3'

6 ------|---------------------

7 'a1' | -1 +1 -1

8 'a2' | -1 -1 +1

9 'a3' | +1 +1 -1

10 >>> g.showPreKernels()

11 *--- Computing preKernels ---*

12 Dominant preKernels :

13 ['a3']

14 independence : 1.0

15 dominance : 1.0

16 absorbency : -1.0

17 covering : 1.000

18 Absorbent preKernels :

19 ['a2']

20 independence : 1.0

21 dominance : -1.0

22 absorbency : 1.0

23 covered : 1.000

It is easy to verify that the characteristic vector [-1, -1, +1] satisfies the initial kernel
equation system; a3 gives an initial kernel. Similarly, the characteristic vector [-1, +1,
-1] verifies indeed the terminal kernel equation system and hence a2 gives a terminal
kernel.

We succeeded now in generalizing kernel equation systems to genuine bipolar-valued
digraphs ([BIS-2006_1p]). The constructive proof, found by Marc Pirlot, is based on
the following fixpoint equation that may be used for computing bipolar-valued kernel
membership vectors,

𝑇 (𝑌) := −(𝑌 ∘𝑅) = 𝑌,

Solving bipolar-valued kernel equation systems

John von Neumann showed indeed that, when a digraphG(X,R) is acyclic with a unique
initial kernel K characterised by its membership characteristics vector Yk, then the
following double bipolar-valued fixpoint equation

𝑇 2(𝑌) := −
(︀
− (𝑌 ∘𝑅) ∘𝑅) = 𝑌 .

will admit a stable high and a stable low fixpoint solution that converge both to Yk
([SCH-1985p]).

Inspired by this crisp double fixpoint equation, we observed that for a given bipolar-
valued digraph G(X,R), each of its dominant or absorbent prekernels Ki in X determines

100

an induced partial graph G(X,R/Ki) which is acyclyc and admits Ki as unique kernel
(see [BIS-2006_2p]).

Following the von Neumann fixpoint algorithm, a similar bipolar-valued extended dou-
ble fixpoint algorithm, applied to G(X,R/Ki), allows to compute hence the associated
bipolar-valued kernel characteristic vectors Yi in polynomial complexity.

Algorithm

in : bipolar-valued digraph G(X,R),
out : set {Y1, Y2, .. } of bipolar-valued kernel membership characteristic
vectors.

1. enumerate all initial and terminal crisp prekernels K, K2, . . . in the given
bipolar-valued digraph (see the tutorial on Computing Digraph Kernels
(page 79));

2. for each crisp initial kernel Ki :

a. construct a partially determined subgraph G(X,R/Ki) supporting
exactly this unique initial kernel Ki ;

b. Use the double fixpoint equation T2 with the partially determined
adjacency matrix R/Ki for computing a stable low and a stable high
fixpoint;

c. Determine the bipolar-valued Ki -membership characteristic vector
Yi with an epistemic disjunction of the previous low and high fix-
points;

3. repeat step (2) for each terminal kernel Kj by using the double fixpoint
equation T2 with the transpose of the adjacency matrix R/Kj.

Time for a practical illustration.

Listing 3.10: Random Bipolar-valued Outranking Di-
graph

1 >>> from outrankingDigraphs import *

2 >>> g = RandomBipolarOutrankingDigraph(Normalized=True,seed=5)

3 >>> print(g)

4 *------- Object instance description ------*

5 Instance class : RandomBipolarOutrankingDigraph

6 Instance name : rel_randomperftab

7 # Actions : 7

8 # Criteria : 7

9 Size : 26

10 Determinateness (%) : 67.14

11 Valuation domain : [-1.0;1.0]

12 Attributes : ['name', 'actions', 'criteria', 'evaluation',

13 'relation', 'valuationdomain', 'order',

14 'gamma', 'notGamma']

101

The random outranking digraph g, we consider here in Listing 3.10 for illustration, models
the pairwise outranking situations between seven decision alternatives evaluated on seven
incommensurable performance criteria. We compute its corresponding bipolar-valued
prekernels on the associated codual digraph gcd.

Listing 3.11: Strict Prekernels

1 >>> gcd = ~(-g) # strict outranking digraph

2 >>> gcd.showPreKernels()

3 *--- Computing prekernels ---*

4 Dominant prekernels :

5 ['a1', 'a4', 'a2']

6 independence : +0.000

7 dominance : +0.070

8 absorbency : -0.488

9 covering : +0.667

10 Absorbent prekernels :

11 ['a7', 'a3']

12 independence : +0.000

13 dominance : -0.744

14 absorbency : +0.163

15 covered : +0.800

16 *----- statistics -----

17 graph name: converse-dual_rel_randomperftab

18 number of solutions

19 dominant kernels : 1

20 absorbent kernels: 1

21 cardinality frequency distributions

22 cardinality : [0, 1, 2, 3, 4, 5, 6, 7]

23 dominant kernel : [0, 0, 0, 1, 0, 0, 0, 0]

24 absorbent kernel: [0, 0, 1, 0, 0, 0, 0, 0]

25 Execution time : 0.00022 sec.

The codual outranking digraph, modelling a strict outranking relation, admits an initial
prekernel [a1, a2, a4] and a terminal one [a3, a7] (see Listing 3.11 Line 5 and 11).

Let us compute the initial prekernel restricted adjacency table with the
domkernelrestrict() method.

1 >>> k1Relation = gcd.domkernelrestrict(['a1','a2','a4'])

2 >>> gcd.showHTMLRelationTable(

3 ... actionsList=['a1','a2','a4','a3','a5','a6','a7'],

4 ... relation=k1Relation,

5 ... tableTitle='K1 restricted adjacency table')

102

Fig. 3.17: Initial kernel [a1, a2, a4] restricted adjacency table

We first notice that this initial prekernel is indeed only weakly independent : The outrank-
ing situation between a4 and a1 appears indeterminate. The corresponding initial preker-
nel membership characteristic vector may be computed with the computeKernelVector()
method.

Listing 3.12: Fixpoint iterations for initial prekernel [‘a1’,
‘a2’, ‘a4’]

1 >>> gcd.computeKernelVector(['a1','a2','a4'],Initial=True,Comments=True)

2 --> Initial prekernel: {'a1', 'a2', 'a4'}

3 initial low vector : [-1.00, -1.00, -1.00, -1.00, -1.00, -1.00, -1.00]

4 initial high vector: [+1.00, +1.00, +1.00, +1.00, +1.00, +1.00, +1.00]

5 1st low vector : [0.00, +0.21, -0.21, 0.00, -0.44, -0.07, -0.58]

6 1st high vector : [+1.00, +1.00, +1.00, +1.00, +1.00, +1.00, +1.00]

7 2nd low vector : [0.00, +0.21, -0.21, 0.00, -0.44, -0.07, -0.58]

8 2nd high vector : [0.00, +0.21, -0.21, +0.21, -0.21, -0.05, -0.21]

9 3rd low vector : [0.00, +0.21, -0.21, +0.21, -0.21, -0.07, -0.21]

10 3rd high vector : [0.00, +0.21, -0.21, +0.21, -0.21, -0.05, -0.21]

11 4th low vector : [0.00, +0.21, -0.21, +0.21, -0.21, -0.07, -0.21]

12 4th high vector : [0.00, +0.21, -0.21, +0.21, -0.21, -0.07, -0.21]

13 # iterations : 4

14 low & high fusion : [0.00, +0.21, -0.21, +0.21, -0.21, -0.07, -0.21]

15 Choice vector for initial prekernel: {'a1', 'a2', 'a4'}

16 a2: +0.21

17 a4: +0.21

18 a1: 0.00

19 a6: -0.07

20 a3: -0.21

21 a5: -0.21

22 a7: -0.21

We start the fixpoint computation with an empty set characterisation as first low vector
and a complete set X characterising high vector. After each iteration, the low vector is

103

set to the negation of the previous high vector and the high vector is set to the negation
of the previous low vector.

A unique stable prekernel characteristic vector Y1 is here attained at the fourth iteration
with positive members a2 : +0.21 and a4 : +0.21 (60.5% criteria significance majority);
a1 : 0.00 being an ambiguous potential member. Alternatives a3, a5, a6 and a7 are all
negative members, i.e. positive non members of this outranking prekernel.

Let us now compute the restricted adjacency table for the outranked, i.e. the terminal
prekernel [a3, a7].

1 >>> k2Relation = gcd.abskernelrestrict(['a3','a7'])

2 >>> gcd.showHTMLRelationTable(

3 ... actionsList=['a3','a7','a1','a2','a4','a5','a6'],

4 ... relation=k2Relation,

5 ... tableTitle='K2 restricted adjacency table')

Fig. 3.18: Terminal kernel [‘a3’,’a7’] restricted adjacency table

Again, we notice that this terminal prekernel is indeed only weakly independent. The
corresponding bipolar-valued characteristic vector Y2 may be computed as follows.

1 >>> gcd.computeKernelVector(['a3','a7'],Initial=False,Comments=True)

2 --> Terminal prekernel: {'a3', 'a7'}

3 initial low vector : [-1.00, -1.00, -1.00, -1.00, -1.00, -1.00, -1.00]

4 initial high vector : [+1.00, +1.00, +1.00, +1.00, +1.00, +1.00, +1.00]

5 1st low vector : [-0.16, -0.49, 0.00, -0.58, -0.16, -0.30, +0.49]

6 1st high vector : [+1.00, +1.00, +1.00, +1.00, +1.00, +1.00, +1.00]

7 2nd low vector : [-0.16, -0.49, 0.00, -0.58, -0.16, -0.30, +0.49]

8 2nd high vector : [-0.16, -0.49, 0.00, -0.49, -0.16, -0.26, +0.49]

9 3rd low vector : [-0.16, -0.49, 0.00, -0.49, -0.16, -0.26, +0.49]

10 3rd high vector : [-0.16, -0.49, 0.00, -0.49, -0.16, -0.26, +0.49]

11 # iterations : 3

12 high & low fusion : [-0.16, -0.49, 0.00, -0.49, -0.16, -0.26, +0.49]

13 Choice vector for terminal prekernel: {'a3', 'a7'}

(continues on next page)

104

(continued from previous page)

14 a7: +0.49

15 a3: 0.00

16 a1: -0.16

17 a5: -0.16

18 a6: -0.26

19 a2: -0.49

20 a4: -0.49

A unique stable bipolar-valued high and low fixpoint is attained at the third iteration
with a7 positively confirmed (about 75% criteria significance majority) as member of this
terminal prekernel, whereas the membership of a3 in this prekernel appears indetermi-
nate. All the remaining nodes have negative membership characteristic values and are
hence positively excluded from this prekernel.

When we reconsider the graphviz drawing of this outranking digraph (see Fig. 52 in the
tutorial on Computing Digraph Kernels (page 79)),

Fig. 3.19: The strict outranking digraph oriented by the positive members of its initial
and terminal prekernels

it becomes obvious why alternative a1 is neither included nor excluded from the
initial prekernel. Same observation is applicable to alternative a3 which can neither be
included nor excluded from the terminal prekernel. It may even happen, in case of
more indeterminate outranking situations, that no alternative is positively included or
excluded from a weakly independent prekernel; the corresponding bipolar-valued mem-
bership characteristic vector being completely indeterminate (see for instance the tutorial
on Computing a Best Choice Recommendation).

To illustrate finally why sometimes we need to operate an epistemic disjunctive fusion of
unequal stable low and high membership characteristics vectors (see Step 2.c.), let us

105

consider, for instance, the following crisp 7-cycle graph.

1 >>> g = CirculantDigraph(order=7,circulants=[-1,1])

2 >>> g

3 *------- Digraph instance description ------*

4 Instance class : CirculantDigraph

5 Instance name : c7

6 Digraph Order : 7

7 Digraph Size : 14

8 Valuation domain : [-1.00;1.00]

9 Determinateness (%) : 100.00

10 Attributes : ['name', 'order', 'circulants', 'actions',

11 'valuationdomain', 'relation',

12 'gamma', 'notGamma']

Digraph c7 is a symmetric crisp digraph showing, among others, the maximal indepen-
dent set {‘2’, ‘5’, ‘7’}, i.e. an initial as well as terminal kernel. We may compute the
corresponding initial kernel characteristic vector.

1 >>> g.computeKernelVector(['2','5','7'],Initial=True,Comments=True)

2 --> Initial kernel: {'2', '5', '7'}

3 initial low vector : [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0]

4 initial high vector : [+1.0, +1.0, +1.0, +1.0, +1.0, +1.0, +1.0]

5 1 st low vector : [-1.0, 0.0, -1.0, -1.0, 0.0, -1.0, 0.0]

6 1 st high vector : [+1.0, +1.0, +1.0, +1.0, +1.0, +1.0, +1.0]

7 2 nd low vector : [-1.0, 0.0, -1.0, -1.0, 0.0, -1.0, 0.0]

8 2 nd high vector : [0.0, +1.0, 0.0, 0.0, +1.0, 0.0, +1.0]

9 stable low vector : [-1.0, 0.0, -1.0, -1.0, 0.0, -1.0, 0.0]

10 stable high vector : [0.0, +1.0, 0.0, 0.0, +1.0, 0.0, +1.0]

11 #iterations : 3

12 low & high fusion : [-1.0, +1.0, -1.0, -1.0, +1.0, -1.0, +1.0]

13 Choice vector for initial prekernel: {'2', '5', '7'}

14 2: +1.00

15 5: +1.00

16 7: +1.00

17 1: -1.00

18 3: -1.00

19 4: -1.00

20 6: -1.00

Notice that the stable low vector characterises the negative membership part, whereas,
the stable high vector characterises the positive membership part (see Lines 9-10
above). The bipolar disjunctive fusion assembles eventually both stable parts into the
correct prekernel characteristic vector (Line 12).

The adjacency matrix of a symmetric digraph staying unchanged by the transposition
operator, the previous computations, when qualifying the same kernel as a terminal
instance, will hence produce exactly the same result.

106

Note: It is worthwhile noticing again the essential computational role, the logical
indeterminate value 0.0 is playing in this double fixpoint algorithm. To implement
such kind of algorithms without a logical neutral term would be like implementing
numerical algorithms without a possible usage of the number 0. Infinitely many trivial
impossibility theorems and dubious logical results come up.

Back to Content Table (page 1)

3.4 On characterizing bipolar-valued outranking digraphs

� Necessary properties of the outranking digraph (page 107)

� Partial tournaments may be strict outranking digraphs (page 109)

� Recognizing bipolar outranking valuations (page 111)

� On generating random outranking valuations (page 114)

Necessary properties of the outranking digraph

Bipolar-valued outranking digraphs verify two necessary properties [BIS-2013p]:

1) They are weakly complete. For all pairs (x, y) of decision actions:

max
(︀
𝑟(𝑥 ≿ 𝑦), 𝑟(𝑦 ≿ 𝑥)

)︀
⩾ 0.0 and,

2) The construction of the outranking relation verifies the coduality principle. For all
pairs (x, y) of decision actions, 𝑟(𝑥 ̸≿ 𝑦) = 𝑟(𝑦 ⋩ 𝑥).

Now, the codual of weakly complete digraphs correspond to the class of asymmetric
digraphs i.e. partial tournaments. If, on the one limit, all outranking relations are
symmetric, the partial tournament will be empty. On the other hand, if the outranking
relation models a linear ranking, the tournament will be complete and transitive.

Let us consider for instance such a partial tournament6.

6 The example was proposed in 2005 by D. Bouyssou when discussing the necessity or not of a Rubis

best choice recommendation to be internally stable –pragmatic principle P3– [BIS-2008p]

107

Fig. 3.20: A partial tournament

In Fig. 3.20, only the transitive closure between alternatives a and d is missing. Oth-
erwise, the relation would be modelling a linear ranking from a to d. If this relation is
actually supposed to model a strict outranking relation then both alternatives a and d
positively outrank each other. Is it possible to build a corresponding valid performance
tableau which supports epistemically this partial tournament?

It is indeed possible to define such a performance tableau by, first, using a single criterion
g1 of significance weight 2 modelling the apparent linear ranking: a > b > c > d.
We can, secondly, add a criterion g2 of significance weight 3 modelling exclusively the
missing “as well evaluated as” situation between a and d. Both criteria admit without
loss of genericity a performance measurement scale of 0 to 100 points with an indifference
discrimination threshold of 2.5 and preference discrimination threshold of 5 points. No
considerable performance difference discrimination is needed in this example.

Listing 3.13: A potential performance tableau

1 >>> from outrankingDigraphs import *

2 >>> pt = PerformanceTableau('testBouyssou')

3 >>> pt.showPerformanceTableau(ndigits=0)

4 *---- performance tableau ----*

5 Criteria | 'g1' 'g2'

6 Actions | 2 3

7 ---------|---------------

8 'a' | 70 70

9 'b' | 50 NA

10 'c' | 30 NA

11 'd' | 10 70

12 >>> g = BipolarOutrankingDigraph(pt)

13 >>> g.showRelationTable()

14 * ---- Relation Table -----

15 r | 'a' 'b' 'c' 'd'

(continues on next page)

108

(continued from previous page)

16 -----|---------------------------

17 'a' | +1.00 +0.40 +0.40 +1.00

18 'b' | -0.40 +1.00 +0.40 +0.40

19 'c' | -0.40 -0.40 +1.00 +0.40

20 'd' | +0.20 -0.40 -0.40 +1.00

21 Valuation domain: [-1.000; 1.000]

In Listing 3.13 Lines 8-11 we notice that criterion g1 models with a majority margin of
2/5 = 0.40 the requested linear ranking and criterion g2 warrants with a majority margin
of 1/5 = 0.20 that d is “at least as well evaluated as” d (see Lines 17 and 20) leading to
the necessary reciprocal outranking situations between a and d.

It becomes apparent with the partial tournament example here that, when the number
of criteria is not constrained, we may model this way compatible pairwise outranking
situations independently one of the other.

Partial tournaments may be strict outranking digraphs

In the randomDigraphs module we provide the RandomPartialTournament class for pro-
viding such partial tournament instances.

Listing 3.14: A partial tournament of order 5

1 >>> from randomDigraphs import RandomPartialTournament

2 >>> rpt = RandomPartialTournament(order=5,seed=998)

3 >>> rpt.showRelationTable()

4 * ---- Relation Table -----

5 S | 'a1' 'a2' 'a3' 'a4' 'a5'

6 ------|-----------------------------------

7 'a1' | 0.00 1.00 1.00 -1.00 1.00

8 'a2' | -1.00 0.00 1.00 1.00 1.00

9 'a3' | -1.00 -1.00 0.00 1.00 -1.00

10 'a4' | 1.00 -1.00 -1.00 0.00 -1.00

11 'a5' | -1.00 -1.00 -1.00 1.00 0.00

12 Valuation domain: [-1.00;1.00]

13 >>> rpt.exportGraphViz()

14 *---- exporting a dot file for GraphViz tools ----*

15 Exporting to randomPartialTournament.dot

16 dot -Grankdir=BT -Tpng randomPartialTournament.dot\

17 -o randomPartialTournament.png

109

Fig. 3.21: A random partial tournament of order 5

The crisp partial tournament rpt shown in Fig. 3.21 corresponds to the potential strict
outranking digraph one may obtain with the following multicriteria performance records
measured on 10 criteria admitting a 0-100 scale with a 2.5pts indifference and a 5pts
preference discrimination thresholds.

1 *---- performance tableau -----*

2 criteria | weights | 'a1' 'a2' 'a3' 'a4' 'a5'

3 ---------|---------------------------------------

4 'g01' | 1.0 | 60 40 NA NA NA

5 'g02' | 1.0 | 60 NA 40 NA NA

6 'g03' | 1.0 | 40 NA NA 60 NA

7 'g04' | 1.0 | 60 NA NA NA 40

8 'g05' | 1.0 | NA 60 40 NA NA

9 'g06' | 1.0 | NA 60 NA 40 NA

10 'g07' | 1.0 | NA 60 NA NA 40

11 'g08' | 1.0 | NA NA 60 40 NA

12 'g09' | 1.0 | NA NA 50 NA 50

13 'g10' | 1.0 | NA NA NA 40 60

Each one of the ten performance criteria independently models, with a majority margin
of 1/10 = 0.10, one of the 10 links between the five nodes of the tournament rpt. Criterion
g01 models for instance the asymmetric link between a1 and a2 (Line 4), criterion g9
models the symmetric link between a3 and a5 (Line 12) and so on. The bipolar-valued
strict outranking relation we obtain with this performance tableau is the following:

1 * ---- Relation Table -----

2 r | 'a1' 'a2' 'a3' 'a4' 'a5'

(continues on next page)

110

(continued from previous page)

3 -----|----------------------------------

4 'a1' | - +0.10 +0.10 -0.10 +0.10

5 'a2' | -0.10 - +0.10 +0.10 +0.10

6 'a3' | -0.10 -0.10 - +0.10 -0.10

7 'a4' | +0.10 -0.10 -0.10 - -0.10

8 'a5' | -0.10 -0.10 -0.10 +0.10 -

9 Valuation domain: [-1.000; 1.000]

And we recover here exactly the random partial tournament shown in Fig. 3.21.

To all partial tournament we may this way associate a multicriteria performance tableau,
making it hence the instance of a potential bipolar-valued strict outranking digraph. Yet,
we have not taken care of reproducing the precise characteristic valuation of a given partial
tournament. Is it as well possible to always associate a valid performance tableau which
produces a strict outranking digraph with exactly the given characteristic valuation?

Recognizing bipolar outranking valuations

From the fact that the epistemic support of a strict outranking –’better evaluated as ’–
situation is a potential sub-part only of the epistemic support of the corresponding out-
ranking –’at least as well evaluated as ’– situation, it follows that for all irreflexive pairs
(x, y), 𝑟(𝑥 ≿ 𝑦) ⩾ 𝑟(𝑥 ⋩ 𝑦), which induces by the coduality principle the following
necessary condition on the valuation of a potential outranking digraph:

𝑟(𝑥 ≿ 𝑦) ⩾ −𝑟(𝑦 ≿ 𝑥), ∀𝑥 ̸= 𝑦 ∈ 𝑋. (3.1)

Condition (3.1) strengthens in fact the weakly completeness property. Indeed:

(︀
𝑟(𝑥 ≿ 𝑦) < 0.0

)︀
⇒

[︀
𝑟(𝑦 ≿ 𝑥) ⩾ −𝑟(𝑥 ≿ 𝑦) > 0.0

]︀
. (3.2)

And,

(︀
𝑟(𝑥 ≿ 𝑦) = 0.0

)︀
⇒

(︀
𝑟(𝑦 ≿ 𝑥) ⩾ 0.0

)︀
. (3.3)

The bipolar valuation of a valid outranking digraph is hence necessarily characterised by
the following condition, algebraically equivalent to Condition (3.1):

𝑟(𝑥 ≿ 𝑦) + 𝑟(𝑦 ≿ 𝑥) ⩾ 0.0, ∀𝑥 ̸= 𝑦 ∈ 𝑋. (3.4)

111

It remains to proof that Condition (3.4) is (or is actually not) also sufficient for charac-
terising the valuation of bipolar-valued outranking digraphs. In other words:

Conjecture

For any given bipolar and rational valued digraph verifying (3.4) it is possible
to construct with an unconstrained number of criteria a valid performance
tableau that results in identically valued pairwise outranking situations.

If the conjecture reveals itself to be true, and we are rather confident that this will indeed
be the case, we get a method of complexity 𝑂(𝑛2) for recognizing potential outranking
digraph instances with view solely on their relational characteristic valuation (see Listing
3.15 Lines 16-17) [MEY-2008].

Listing 3.15: Recognizing a bipolar outranking valuation

1 >>> from outrankingDigraphs import *

2 >>> t = RandomPerformanceTableau(weightDistribution="equiobjectives",

3 ... numberOfActions=5,numberOfCriteria=3,

4 ... missingDataProbability=0.05,seed=100)

5 >>> g = BipolarOutrankingDigraph(t)

6 >>> g.showRelationTable()

7 * ---- Relation Table -----

8 r | 'a1' 'a2' 'a3' 'a4' 'a5'

9 ------|------------------------------------

10 'a1' | +1.00 -0.33 -0.33 -0.67 -1.00

11 'a2' | +0.33 +1.00 -0.33 +0.00 +0.33

12 'a3' | +1.00 +0.33 +1.00 +0.67 +0.33

13 'a4' | +0.67 +0.00 +0.00 +1.00 +0.67

14 'a5' | +1.00 -0.33 -0.33 -0.67 +1.00

15 Valuation domain: [-1.000; 1.000]

16 >>> g.isOutrankingDigraph()

17 True

Whereas, when we consider in Listing 3.16 a genuine randomly bipolar-valued digraph of
order 5, this check will mostly fail.

Listing 3.16: Failing the outranking valuation check

1 >>> rdg = RandomValuationDigraph(order=5)

2 >>> rdg.showRelationTable()

3 * ---- Relation Table -----

4 S | 'a1' 'a2' 'a3' 'a4' 'a5'

5 ------|---

6 'a1' | 0.00 0.00 -0.68 0.94 0.06

7 'a2' | -0.14 0.00 -0.44 -0.04 0.84

8 'a3' | -0.14 0.12 0.00 -0.10 -0.62

9 'a4' | 0.40 -0.86 0.98 0.00 0.90

10 'a5' | -0.92 0.18 -0.42 0.14 0.00

11 Valuation domain: [-1.00;1.00]

(continues on next page)

112

(continued from previous page)

12 >>> rdg.isOutrankingDigraph(Debug=True)

13 x,y,relation[x][y],relation[y][x] a1 a2 0.00 -0.14

14 Not a valid outranking valuation

15 x,y,relation[x][y],relation[y][x] a1 a3 -0.68 -0.14

16 Not a valid outranking valuation

17 x,y,relation[x][y],relation[y][x] a1 a5 0.06 -0.92

18 Not a valid outranking valuation

19 x,y,relation[x][y],relation[y][x] a2 a3 -0.44 0.12

20 Not a valid outranking valuation

21 x,y,relation[x][y],relation[y][x] a2 a4 -0.04 -0.86

22 Not a valid outranking valuation

23 x,y,relation[x][y],relation[y][x] a3 a5 -0.62 -0.42

24 Not a valid outranking valuation

25 False

We observe in Lines 13-24 the absence of any relation between a1 and a3, between a2 and
a4, and between a3 and a5. This violates the necessary weak completeness Condition
(3.2). The pairs (a1, a2) and (a2, a3) furthermore violate Condition (3.3).

A Monte Carlo simulation with randomly bipolar-valued digraphs of order 5 shows that
an average proportion of only 0.07% of random instances verify indeed Condition (3.4).
With randomly bipolar-valued digraphs of order 6, this proportion drops furthermore
to 0.002%. Condition (3.4) is hence a very specific characteristic of bipolar outranking
valuations.

Readers challenged by the proof of the sufficiency of Condition (3.4) may find below a
bipolar-valued relation verifying (3.4)

1 * ---- Relation Table -----

2 r | 'a1' 'a2' 'a3' 'a4' 'a5'

3 -----|----------------------------------

4 'a1' | +1.00 +0.60 +0.60 +0.20 +0.20

5 'a2' | -0.20 +1.00 +0.00 -0.20 +0.20

6 'a3' | -0.40 +0.60 +1.00 +0.20 +0.60

7 'a4' | -0.20 +0.20 -0.20 +1.00 +0.20

8 'a5' | -0.20 +0.00 -0.20 +0.60 +1.00

9 Valuation domain: [-1.000; 1.000]

Is it possible to construct a corresponding performance tableau giving exactly the shown
valuation? Hint : the criteria may be equi-significant7.

Solving the previous problem requires to choose an adequate number of criteria. This
raises the following question:

What is the minimal number of criteria needed in a performance tableau that
corresponds to the valuation of a given bipolar-valued outranking digraph.

7 A solution is provided under the name enigmaPT.py in the examples directory of the Digraph3
resources

113

We call this number the epistemic dimension of the bipolar-valued outranking digraph.
This dimension depends naturally on the potential presence of chordless outranking cycles
and indeterminate outranking situations. A crisp linear outranking digraph, for instance,
can be modelled with a single performance criterion and is hence of dimension 1. Design-
ing an algorithm for determining epistemic dimensions remains an open challenge.

Let us finally mention that the dual –the negation– of Condition (3.4) characterizes strict
outranking valuations. Indeed, by verifying the coduality principle:

−
(︀
𝑟(𝑥 ≿ 𝑦) + 𝑟(𝑦 ≿ 𝑥)

)︀
= 𝑟(𝑦 ⋩ 𝑥) + 𝑟(𝑥 ⋩ 𝑦),

we obtain the following condition:

𝑟(𝑥 ⋩ 𝑦) + 𝑟(𝑦 ⋩ 𝑥) ⩽ 0.0, ∀𝑥 ̸= 𝑦 ∈ 𝑋. (3.5)

A similar Monte Carlo simulation with randomly bipolar-valued digraphs of order 5 shows
that an average proportion of only 0.12% of random instances verify Condition (3.5).
With randomly bipolar-valued digraphs of order 6, this proportion drops to 0.006%.
Condition (3.5) is hence again a very specific characteristic of bipolar strict outranking
valuations.

On generating random outranking valuations

The RandomOutrankingValuationDigraph class from the randomDigraphs module pro-
vides a generator for random outranking valuation digraphs.

Listing 3.17: Generating random outranking valuations

1 >>> from randomDigraphs import RandomOutrankingValuationDigraph

2 >>> rov = RandomOutrankingValuationDigraph(order=5,

3 ... weightsSum=10,

4 ... distribution='uniform',

5 ... incomparabilityProbability=0.1,

6 ... polarizationProbability=0.05,

7 ... seed=1)

8 >>> rov.showRelationTable()

9 * ---- Relation Table -----

10 S | 'a1' 'a2' 'a3' 'a4' 'a5'

11 ------|-----------------------------------

12 'a1' | 10 -2 10 4 4

13 'a2' | 10 10 10 4 10

14 'a3' | -10 -10 10 0 8

15 'a4' | -4 -3 0 10 8

16 'a5' | 2 -10 2 3 10

(continues on next page)

114

(continued from previous page)

17 Valuation domain: [-10;+10]

18 >>> rov.isOutrankingDigraph()

19 True

The generator works like this. For each link between {𝑥, 𝑦}, first a random integer
number is uniformly drawn for 𝑟(𝑦, 𝑥) in the given range [−𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑆𝑢𝑚; +𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑆𝑢𝑚]
(see Listing 3.17 Line 3). Then, 𝑟(𝑥, 𝑦) is uniformly drawn in the remaining integer
interval [−𝑟(𝑦, 𝑥); +𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑆𝑢𝑚] .

In order to favour a gathering around the median zero characteristic value, it is possible
to use a triangular law instead (see Line 4).

For inserting random considerable performance difference situations, it is possible to
define the probabilities of incomparability (default 10%, see Line 5) and/or polarized
outranking situations (5%, see Line 6).

The resulting valuation (see Lines 12-16) verifies indeed condition (3.4) (see Lines 18-19).

Back to Content Table (page 1)

3.5 Consensus quality of the bipolar-valued outranking relation

� Circular performance tableaux (page 115)

� A difficult decision problem (page 117)

� The central CONDORCET point of view (page 119)

Circular performance tableaux

In order to study the actual consensus quality of a bipolar-valued outranking relation,
let us consider a small didactic performance tableau consisting of five decision actions
evaluated with respect to five performance criteria of equal significance. On each one of
the criteria, we swap first and last ranked evaluations in a circular way (see Lines 8-12
below).

Listing 3.18: Circular performance tableau

1 >>> from perfTabs import CircularPerformanceTableau

2 >>> cpt5 = CircularPerformanceTableau(order=5,NoPolarisation=True)

3 >>> cpt5.showPerformanceTableau()

4 *---- performance tableau -----*

5 Criteria | 'g1' 'g2' 'g3' 'g4' 'g5'

6 Actions | 1 1 1 1 1

7 ---------|---

(continues on next page)

115

(continued from previous page)

8 'a1' | 0.00 80.00 60.00 40.00 20.00

9 'a2' | 20.00 0.00 80.00 60.00 40.00

10 'a3' | 40.00 20.00 0.00 80.00 60.00

11 'a4' | 60.00 40.00 20.00 0.00 80.00

12 'a5' | 80.00 60.00 40.00 20.00 0.00

In Listing 3.18 Line 2, we do not consider for the moment any considerable performance
differences. A performance difference up to 2.5 is considered insignificant, whereas a
performance difference of 5.0 and more is attesting a preference situation.

1 >>> cpt5.showCriteria()

2 *---- criteria -----*

3 g1 RandomPerformanceTableau() instance

4 Preference direction: max

5 Scale = (0.00, 100.00)

6 Weight = 0.200

7 Threshold ind : 2.50 + 0.00x ; percentile: 0.00

8 Threshold pref : 5.00 + 0.00x ; percentile: 0.00

9 g2 RandomPerformanceTableau() instance

10 ...

All the five decision alternatives show in fact a same performance profile, yet distributed
differently on the criteria which are equally significant. The preferential information of
such a circular performance tableau does hence not deliver any clue for solving a selection
or a ranking decision problem.

Let us inspect the corresponding bipolar-valued outranking digraph.

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> bodg = BipolarOutrankingDigraph(cpt5)

3 >>> bodg.exportGraphViz()

4 *---- exporting a dot file for GraphViz tools ----*

5 Exporting to rel_circular-5-PT.dot

6 dot -Grankdir=BT -Tpng rel_circular-5-PT.dot\

7 -o rel_circular-5-PT.png

116

Fig. 3.22: Outranking digraph of circular performance tableau of order 5

In Fig. 3.22 we notice that the outranking digraph models in fact a complete and regular
tournament. Each alternative is outranking, respectively outranked by two other alterna-
tives. The outranking relation is not transitive -half of the transitivity arcs are missing-
and we observe five equally credible outranking circuits.

1 >>> bodg.computeTransitivityDegree()

2 Decimal('0.5')

3 >>> bodg.computeChordlessCircuits()

4 >>> bodg.showChordlessCircuits()

5 *---- Chordless circuits ----*

6 5 circuits.

7 1: ['a1', 'a4', 'a3'] , credibility : 0.200

8 2: ['a1', 'a4', 'a2'] , credibility : 0.200

9 3: ['a1', 'a5', 'a3'] , credibility : 0.200

10 4: ['a2', 'a5', 'a3'] , credibility : 0.200

11 5: ['a2', 'a5', 'a4'] , credibility : 0.200

A difficult decision problem

Due to the regular tournament structure, the Copeland scores are the same for each one
of the decision alternatives and we end up with a ranking in alphabetic order.

1 >>> from linearOrders import *

2 >>> cop = CopelandRanking(bodg,Comments=True)

3 Copeland scores

4 a1 : 0

(continues on next page)

117

(continued from previous page)

5 a2 : 0

6 a3 : 0

7 a4 : 0

8 a5 : 0

9 Copeland Ranking:

10 ['a1', 'a2', 'a3', 'a4', 'a5']

Same situation appears below with the NetFlows scores.

1 >>> nf = NetFlowsOrder(bodg,Comments=True)

2 Net Flows :

3 a1 : 0.000

4 a2 : 0.000

5 a3 : 0.000

6 a4 : 0.000

7 a5 : 0.000

8 NetFlows Ranking:

9 ['a1', 'a2', 'a3', 'a4', 'a5']

Yet, when inspecting in Fig. 3.22 the outranking relation, we may notice that, when
ignoring for a moment the upward arcs, an apparent downward ranking [‘a5’, ‘a4’, ‘a3’,
‘a2’, ‘a1’] comes into view. We can try to recover this ranking with the help of the
Kemeny ranking rule.

1 >>> ke = KemenyRanking(bodg)

2 >>> ke.maximalRankings

3 [['a5', 'a4', 'a3', 'a2', 'a1'],

4 ['a4', 'a3', 'a2', 'a1', 'a5'],

5 ['a3', 'a2', 'a1', 'a5', 'a4'],

6 ['a2', 'a1', 'a5', 'a4', 'a3'],

7 ['a1', 'a5', 'a4', 'a3', 'a2']]

The Kemeny rule delivers indeed five optimal rankings which appear to be the circular
versions of the apparent downward ranking [‘a5’, ‘a4’, ‘a3’, ‘a2’, ‘a1’].

The epistemic disjunctive fusion of these five circular rankings gives again an empty
relation (see Fig. 3.23 below).

1 >>> from transitiveDigraphs import RankingsFusionDigraph

2 >>> wke = RankingsFusionDigraph(bodg,ke.maximalRankings)

3 >>> wke.exportGraphViz()

118

Fig. 3.23: Epistemic fusion of the five optimal Kemeny rankings

All ranking rules based on the bipolar-valued outranking digraph apparently deliver the
same result: no effective ranking is possible. When the criteria are supposed to be equally
significant, each decision alternative is indeed equally well performing from a multicriteria
point of view (see Fig. 3.24).

1 >>> cpt5.showHTMLPerformanceHeatmap(Correlations=False,

2 ... rankingRule=None,ndigits=0,

3 ... pageTitle='The circular performance tableau')

Fig. 3.24: The heatmap of the circular performance tableau

The pairwise outranking relation shown in Fig. 3.22 does hence represent a faithful con-
sensus of the preference modelled by each one of the five performance criteria. We can
inspect the actual quality of this consensus with the help of the bipolar-valued equivalence
index (see the advanced topic on the ordinal correlation between bipolar-valued digraphs
(page 69)).

The central CONDORCET point of view

The bipolar-valued outranking relation corresponds in fact to the median of the mul-
ticriteria points of view, at minimal KENDALL’s ordinal correlation distance from all
marginal criteria points of view [BAR-1980p].

Listing 3.19: Outranking Consensus quality

1 >>> bodg.computeOutrankingConsensusQuality(Comments=True)

2 Consensus quality of global outranking:

(continues on next page)

119

(continued from previous page)

3 criterion (weight): valued correlation

4 --------------------------------------

5 g5 (0.200): +0.200

6 g4 (0.200): +0.200

7 g3 (0.200): +0.200

8 g2 (0.200): +0.200

9 g1 (0.200): +0.200

10 Summary:

11 Weighted mean marginal correlation (a): +0.200

12 Standard deviation (b) : +0.000

13 Ranking fairness (a)-(b) : +0.200

As all the performance criteria are supposed to be equally significant, the bipolar-valued
equivalence index of the outranking relation with each marginal criterion is at constant
level +0.200 (see Listing 3.19).

Let us compute the pairwise ordinal correlation indices between each one the five criteria,
including the median outranking relation.

1 >>> from digraphs import CriteriaCorrelationDigraph

2 >>> cc = CriteriaCorrelationDigraph(bodg,WithMedian=True)

3 >>> cc.showRelationTable()

4 * ---- Relation Table -----*

5 S | 'g1' 'g2' 'g3' 'g4' 'g5' 'm'

6 ------|------------------------------------

7 'g1' | 1.00 0.20 -0.20 -0.20 0.20 0.20

8 'g2' | 0.20 1.00 0.20 -0.20 -0.20 0.20

9 'g3' | -0.20 0.20 1.00 0.20 -0.20 0.20

10 'g4' | -0.20 -0.20 0.20 1.00 0.20 0.20

11 'g5' | 0.20 -0.20 -0.20 0.20 1.00 0.20

12 'm' | 0.20 0.20 0.20 0.20 0.20 0.40

13 Valuation domain: [-1.00;1.00]

We observe the same circular arrangement of the pairwise criteria correlations as the one
observed in the circular performance tableau. We may draw a 3D principal plot of this
correlation space.

1 >>> cc.exportPrincipalImage(plotFileName='correlation3Dplot')

120

Fig. 3.25: The 3D plot of the principal components of the correlation matrix

In Fig. 3.25 , the median outranking relation m is indeed situated exactly in the middle
of the regular pentagon of the marginal criteria.

What happens now when we observe imprecise performance evaluations, considerable per-
formance differences, unequal criteria significance weights and missing evaluations? Let
us therefore redo the same computations, but with a corresponding random 3-Objectives
performance tableau.

Listing 3.20: Outranking consensus quality with 3-
objectives tableaux

1 >>> from randomPerfTabs import\

2 ... Random3ObjectivesPerformanceTableau

3 >>> pt3Obj = Random3ObjectivesPerformanceTableau(

4 ... numberOfActions=7,numberOfCriteria=13,

5 ... missingDataProbability=0.05,seed=1)

6 >>> pt3Obj.showObjectives()

7 Eco: Economical aspect

8 ec01 criterion of objective Eco 18

9 ec05 criterion of objective Eco 18

10 ec09 criterion of objective Eco 18

11 ec10 criterion of objective Eco 18

12 Total weight: 72.00 (4 criteria)

13 Soc: Societal aspect

(continues on next page)

121

(continued from previous page)

14 so02 criterion of objective Soc 12

15 so06 criterion of objective Soc 12

16 so07 criterion of objective Soc 12

17 so11 criterion of objective Soc 12

18 so12 criterion of objective Soc 12

19 so13 criterion of objective Soc 12

20 Total weight: 72.00 (6 criteria)

21 Env: Environmental aspect

22 en03 criterion of objective Env 24

23 en04 criterion of objective Env 24

24 en08 criterion of objective Env 24

25 Total weight: 72.00 (3 criteria)

26 >>> from outrankingDigraphs import\

27 ... BipolarOutrankingDigraph,

28 ... CriteriaCorrelationDigraph

29 >>> g3Obj = BipolarOutrankingDigraph(pt3Obj)

30 >>> cc3Obj = CriteriaCorrelationDigraph(g3Obj,

31 ... ValuedCorrelation=True,WithMedian=True)

32 >>> cc3Obj.saveCSV('critCorrTable.csv')

33 >>> cc3Obj.exportPrincipalImage(

34 ... plotFileName='correlation3Dplot-3Obj')

Fig. 3.26: The 3D plot of the principal components of the 3-Objectives correlation matrix

The global outranking relation m remains well situated in the weighted center of the
eleven marginal criteria outranking relations. The global outranking relation ‘m’ is indeed

122

mostly correlated with criteria: ‘ec04’ (+0.333), ‘ec06’ (+0.295), ‘en03’ (+0.243) and
‘ec01’ (+0.232) (see Fig. 3.27).

1 >>> criteriaList = [x for x in cc3Obj.actions]

2 >>> criteriaList.sort()

3 >>> cc3Obj.showHTMLRelationTable(actionsList=criteriaList,

4 ... tableTitle='Valued criteria correlation table',

5 ... ReflexiveTerms=True,relationName='tau(x,y)',ndigits=3)

Fig. 3.27: Bipolar-valued relational equivalence table with included global outranking
relation ‘m’

Let us conclude by showing in Listing 3.21 how to draw with the R statistics software the
dendogram of a hierarchical clustering of the previous relational equivalence table. We
use therefore the criteria correlation digraph cc3Obj saved in CSV format (see Listing
3.20 Line 32).

123

Listing 3.21: R session for drawing a hierarchical dendo-
gram

1 > x = read.csv('critCorrTable.csv',row.names=1)

2 > X = as.matrix(x)

3 > dd = dist(X,method='euclidian')

4 > hc = hclust(dd)

5 > plot(hc)

Fig. 3.28: Hierarchical clustering of the criteria correlation table

Fig. 3.28 confirms the actual relational equivalence structure of the marginal criteria
outrankings and the global outranking relation. Environmental and economic criteria
(left in Fig. 3.26) are opposite to the societal criteria (right in Fig. 3.26). This opposition
results in fact from the random generator profile of the given seven decision alternatives
as shown in Listing 3.22 below8.

Listing 3.22: Random generator profile of the decision
alternatives

1 >>> pt3Obj.showActions()

2 *----- show decision action -----*

3 key: p1

4 name: public policy p1 Eco+ Soc- Env+
(continues on next page)

8 See the tutorial on Generating random performance tableaux

124

(continued from previous page)

5 profile: {'Eco':'good', 'Soc':'weak', 'Env':'good'}

6 key: p2

7 name: public policy p2 Eco~ Soc+ Env~

8 profile: {'Eco':'fair', 'Soc':'good', 'Env':'fair'}

9 key: p3

10 name: public policy p3 Eco~ Soc~ Env-

11 profile: {'Eco':'fair', 'Soc':'fair', 'Env':'weak'}

12 key: p4

13 name: public policy p4 Eco~ Soc+ Env+

14 profile: {'Eco':'fair', 'Soc':'good', 'Env':'good'}

15 key: p5

16 name: public policy p5 Eco~ Soc+ Env~

17 profile: {'Eco':'fair', 'Soc':'good', 'Env':'fair'}

18 key: p6

19 name: public policy p6 Eco~ Soc- Env+

20 profile: {'Eco':'fair', 'Soc':'weak', 'Env':'good'}

21 key: p7

22 name: public policy p7 Eco- Soc~ Env~

23 profile: {'Eco':'weak', 'Soc':'fair', 'Env':'fair'}

Back to Content Table (page 1)

4 Appendix

References

[BIS-2015p] Bisdorff R. (2015). “The EURO 2004 Best Poster Award: Choosing
the Best Poster in a Scientific Conference”. Chapter 5 in R. Bisdorff,
L. Dias, P. Meyer, V. Mousseau, and M. Pirlot (Eds.), Evaluation and
Decision Models with Multiple Criteria: Case Studies. Springer-Verlag
Berlin Heidelberg, International Handbooks on Information Systems, DOI
10.1007/978-3-662-46816-6_1, pp. 117-166 (downloadable PDF file 754.7 kB
(http://hdl.handle.net/10993/23714)).

[BIS-2014p] Bisdorff R., Meyer P. and Veneziano Th. (2014). “Elicitation of criteria
weights maximising the stability of pairwise outranking statements”. Jour-
nal of Multi-Criteria Decision Analysis (Wiley) 21: 113-124 (downloadable
preprint PDF file 431.4 Kb (http://hdl.handle.net/10993/23701)).

[BIS-2013p] Bisdorff R. (2013) “On Polarizing Outranking Relations with Large
Performance Differences” Journal of Multi-Criteria Decision Anal-
ysis (Wiley) 20:3-12 (downloadable preprint PDF file 403.5 Kb
(http://hdl.handle.net/10993/245)).

125

http://hdl.handle.net/10993/23714
http://hdl.handle.net/10993/23701
http://hdl.handle.net/10993/245

[BAU-2013p] Baujard A., Gavrel F., Igersheim H., Laslier J.-F. and Lebon I. (2013).
“Approval Voting, Evaluation Voting: An Experiment during the 2012 French
Presidential Election”. In Revue Économique (Presses de Sciences Po) Volume
64, Issue 2, pp. 345-356 (dowloadable English translation, 652.5 kB).

[BIS-2012p] Bisdorff R. (2012). “On measuring and testing the ordinal correlation
between bipolar outranking relations”. In Proceedings of DA2PL’2012
From Multiple Criteria Decision Aid to Preference Learning, University
of Mons 91-100. (downloadable preliminary version PDF file 408.5 kB
(http://hdl.handle.net/10993/23909)).

[BAL-2011] Balinski M. and Laraki R. (2011) , Majority Judgment : Measuring, Ranking,
and Electing, MIT Press, mars 2011, 1re éd. 448 p. ISBN 978-0-262-01513-4

[BIS-2008p] Bisdorff R., Meyer P. and Roubens M.(2008) “RUBIS: a bipolar-valued out-
ranking method for the choice problem”. 4OR, A Quarterly Journal of Oper-
ations Research Springer-Verlag, Volume 6, Number 2 pp. 143-165. (Online)
Electronic version: DOI: 10.1007/s10288-007-0045-5 (downloadable prelimi-
nary version PDF file 271.5Kb (http://hdl.handle.net/10993/23716)).

[MEY-2008] Meyer P., Marichal J.-L. and Bisdorff R. (2008). Disagregation of bipolar-
valued outranking relations. In Modelling, Computation and Optimization
in Information Systems and Management Sciences, H. A. Le Thi, P. Bou-
vry, and D. Pham (eds), Springer CCIS 14 204-213, ISBN 978-3-540-87476-8
(preliminary version PDF file 129.9Kb (http://hdl.handle.net/10993/14485)

[BIS-2006_1p] Bisdorff R., Pirlot M. and Roubens M. (2006). “Choices and
kernels from bipolar valued digraphs”. European Journal of Oper-
ational Research, 175 (2006) 155-170. (Online) Electronic version:
DOI:10.1016/j.ejor.2005.05.004 (downloadable preliminary version PDF file
257.3Kb (http://hdl.handle.net/10993/23720)).

[BIS-2006_2p] Bisdorff R. (2006). “On enumerating the kernels in a bipolar-valued
digraph”. Annales du Lamsade 6, Octobre 2006, pp. 1 - 38. Université
Paris-Dauphine. ISSN 1762-455X (downloadable version PDF file 532.2 Kb
(http://hdl.handle.net/10993/38741)).

[BIS-2004_1p] Bisdorff R. (2004). “Concordant Outranking with multiple criteria of or-
dinal significance”. 4OR, Quarterly Journal of the Belgian, French and Ital-
ian Operations Research Societies, Springer-Verlag, Issue: Volume 2, Number
4, December 2004, Pages: 293 - 308. [ISSN: 1619-4500 (Paper) 1614-2411
(Online)] Electronic version: DOI: 10.1007/s10288-004-0053-7 (downloadable
preliminary version PDF file 137.1Kb (http://hdl.handle.net/10993/23721))

[BIS-2004_2p] Bisdorff R. (2004). Preference aggregation with multiple criteria of or-
dinal significance. In: D. Bouyssou, M. Janowitz, F. Roberts, and A.
Tsouki´s (eds.), Annales du LAMSADE, 3, Octobre 2004, Université Paris-
Dauphine, pp. 25-44 [ISSN 1762-455X] (downloadable PDF file 167.6Kb
(http://hdl.handle.net/10993/42420)).

126

http://hdl.handle.net/10993/23909
http://hdl.handle.net/10993/23716
http://hdl.handle.net/10993/14485
http://hdl.handle.net/10993/23720
http://hdl.handle.net/10993/23720
http://hdl.handle.net/10993/38741
http://hdl.handle.net/10993/23721
http://hdl.handle.net/10993/42420

[SCH-1985p] Schmidt G. and Ströhlein Th. (1985), “On kernels of graphs and solutions
of games: a synopsis based on relations and fixpoints”. SIAM, J. Algebraic
Discrete Methods, 6:54–65.

[BAR-1980p] Barbut M. (1980), “Médianes, Condorcet et Kendall”. Mathématiques et
Sciences Humaines, 69:9–13.

[KEN-1938p] Kendall M.G. (1938), “A New Measure of Rank Correlation”. Biometrica
30:81–93

[ROY-1966p] Benyaoun S., Roy B. and Sussmann B. (1966), ELECTRE: une méthode
pour guider le choix en présence de points de vue multiples. Tech. Rep. 49,
SEMA Direction Scientifique Paris.

[CON-1785p] Condorcet, J.A.N. de Caritat marquis de (1785), Essai sur l’application
de l’analyse à la probabilité des décisions rendues à la pluralité des voix, Im-
primerie royale Paris, https://gallica.bnf.fr/ark:/12148/bpt6k417181/f4.item

[BRI-2008p] Brian E. (2008), “Condorcet and Borda in 1784. Misfits and Documents”,
Journal Electronique d’Histore des Probabilités et de la Statistique, Vol 4, n°1,
Juin/June 2008, https://www.jehps.net/

127

https://gallica.bnf.fr/ark:/12148/bpt6k417181/f4.item
https://www.jehps.net/

	Enhancing the outranking based MCDA approach
	Coping with missing data and indeterminateness
	A motivating data set
	Modelling pairwise bipolar-valued rating opinions

	On confident outrankings with uncertain criteria significance weights
	Modelling uncertain criteria significance weights
	Bipolar-valued likelihood of ‘’at least as good as ” situations
	Confidence level of outranking situations

	On stable outrankings with ordinal criteria significance weights
	Cardinal or ordinal criteria significance weights
	Qualifying the stability of outranking situations
	Computing the stability denotation of outranking situations
	Robust bipolar-valued outranking digraphs

	On unopposed outrankings with multiple decision objectives
	Characterising unopposed multiobjective outranking situations
	Computing unopposed multiobjective choice recommendations

	Enhancing social choice procedures
	Condorcet’s critical perspective on the simple plurality voting rule
	Bipolar approval voting of motions
	Who wins the election?
	Resolving circular social preferences
	The Borda rank analysis method

	Two-stage elections with multipartisan primary selection
	Converting voting profiles into performance tableaux
	Multipartisan primary selection of eligible candidates
	Secondary election winner determination
	Multipartisan preferences in divisive politics

	Tempering plurality tyranny effects with bipolar approval voting
	Bipolar approval voting systems
	Pairwise comparison of bipolar approval votes
	Three-valued evaluative voting system
	Favouring multipartisan candidates

	Selecting the winner of a primary election: a critical commentary
	The French popular primary presidential election 2022
	A bipolar approval-disapproval election
	Ranking the potential presidential candidates

	Theoretical advancements
	Ordinal correlation equals bipolar-valued relational equivalence
	Kendall’s tau index
	Bipolar-valued relational equivalence
	Fitness of ranking heuristics
	Illustrating preference divergences
	Exploring the better rated and the as well as rated opinions

	On computing digraph kernels
	What is a graph kernel ?
	Initial and terminal kernels
	Kernels in lateralized digraphs
	Computing good and bad choice recommendations
	Tractability

	Bipolar-valued kernel membership characteristic vectors
	Kernel equation systems
	Solving bipolar-valued kernel equation systems

	On characterizing bipolar-valued outranking digraphs
	Necessary properties of the outranking digraph
	Partial tournaments may be strict outranking digraphs
	Recognizing bipolar outranking valuations
	On generating random outranking valuations

	Consensus quality of the bipolar-valued outranking relation
	Circular performance tableaux
	A difficult decision problem
	The central CONDORCET point of view

	Appendix
	References

