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Luxembourg
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1 Introduction

The goal of this study is to build a best choice recommendation from a set
of alternatives X. The preference relation on the set X is constructed as a
pairwise comparison indicating to which degree an alternative is at least as
good as another. Such an outranking relation R is generally neither complete 2 ,
antisymetrical 3 nor transitive 4 .

Roy (Roy85) defines the P.α choice problem as a help to determine the “best”
alternative. In general, the search for this alternative can in a first step be
resumed to the ellicitation of a subset of alternatives which is as restricted as
possible. This set Y is meant to help the decision maker to get closer to the
selection of the best alternative.

In the case where the outranking relation is a weak order, the choice recom-
mendation is trivially given by the maximum alternative or the equivalence

1 corresponding author: Patrick Meyer (patrick.meyer@uni.lu)
2 xR y or y R x
3 xR y and y R x ⇒ x = y
4 xR y and y R z ⇒ xR z
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class of all maximal alternatives. If the outranking relation is a partial order,
all the alternatives of the maximal equivalence classes are natural candidates
for the best choice recommendation.

If the outranking relation is not transitive, things become less trivial.

. . . compléter encore un peu l’intro par les noyaux et les hypernoyaux,

et puis par la structure générale du papier

2 On the P.α problem

This Section presents the “best” choice problem. We first focus on the opti-
misation problem, which is a particular case.

2.1 The optimisation problem

In the beginning of the developpment of operational research, the aim was to
determine an optimal decision (the optimum) by basing it on models which
describe an objective reality (Roy00). The concept of the search for an opti-
mum has entered the everyday language. People often talk about the optimum
or about optimising something. An optimal decision is a decision for which
every other possible decisions is strictly worse or at most equivalent. The
search for an optimum is therefore based on the following implicit existence
axiom (Roy81):

In any situation which necessarily involves a decision, there exists at least
one decision which, with sufficient time and means, may be objectively
proved as being optimal whilst remaining neutral in relation to the decision
process.

In (Roy81), three fundamental conditions are elicitated to give sense to the
concept of optimum and guarantee the existence of at least one optimal alter-
native. In particular, the set X of alternatives must be given beforehand and
cannot be changed during the decision process. Furthermore the alternatives
of X must all be comparable and the comparision relation must be transitive.

This last condition is very strong and may not be realistic in many cases. In
particular, in case of a multiple criteria framework, if alternatives are evaluated
by a pairwise comparision procedure, the resulting outranking relation is not
necessarily transitive.
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2.2 Roy’s approach

The P.α problem is different from the quest for the optimum. Roy (Roy85)
defines the P.α choice procedure as an aid to choose the “best” alternative or to
elaborate a selection procedure. In the following description, the optimisation
problem emerges as a special case of the choice procedure.

The goal of the “best” choice problem P.α is to select a single “best” alterna-
tive. The investigation is therefore oriented towards the ellicitation of a subset
Y of X which is as restricted as possible. In order to tend towards an opti-
mum, a small set is required. This set Y is meant to enlighten the decision
maker on the next important step of the process. It is important to note here
that the set of alternatives X could be revisable or transitory. Furthermore,
nothing is said about the transitivity of the relation which allows to compare
the alternatives of X.

The objective of a choice procedure is not to obtain a single “best” alternative
at any cost. As Roy explains, it is important that the not selected alternatives
are rejected for well motivated reasons. Therefore, instead of forcing the pro-
cedure to elicitate a single best alternative, it is preferable to obtain a set of
elements Y , as long as this choice can be strongly justified. This means that
there must be enough arguments to reject the most possible alternatives from
the final subset Y .

Starting from these observations, Roy defines the concept of choice in the P.α
problem as a subset Y of X which has two main characteristics R1 and R2:

• R1 Each alternative which in not selected must be considered as worse as
at least one alternative of Y .

• R2 The subset of retained alternatives Y must be as small as possible.

This means that the alternatives of Y are potential best decision candidates. A
deeper analysis, restricted to Y may eventually reduce the numbre of decision
candidates, or in the ideal case let appear the optimum. Finally, if Y = X or
Y is empty, no best choice recommendation can be provided.

From a methodological point of view, Roy (Roy85) uses the concept of domi-
nant kernel of an outranking digraph to solve the choice problem. A dominant
kernel is a dominant and independent set of alternatives. Nevertheless, the
existence of a unique dominant kernel in a digraph is only verified if the graph
has no circuits. Therefore, in order to avoid the emptyness or the multiplicity
of the set of dominant kernels in a digraph, two approaches are suggested. The
first one proposes to detect the circuits of maximal order in the outranking
digraph and to reduce some or all of them to an equivalence class (ELECTRE
I). The second approach tends to increases the discrimination between certain
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alternatives by removing certain outranking relations in order to break circuits
(ELECTRE IS). Both approaches allow to obtain a unique dominant kernel,
and consequently a unique best choice recommendation.

2.3 Flaws

Roy’s procedure presents some disadvantages. First of all, in the ELECTRE-
like procedures for the “best” choice recommendation, modifications are per-
formed on the outranking digraph in case it has circuits. As a direct conse-
quence the information describing the original problem is altered. A second
flaw concerns the use of the kernel as a best choice. A kernel is necessarily
a set of independent alternatives. This means that any two alternatives are
incomparable (by an absence of a relational link between them). This is a
very strong condition which can lead in some cases, when the graph contains
circuits, to no solution to the P.α problem.

3 New foundations for the “best” choice problem

3.1 Difficulties using kernels

Nevertheless, in these classical approaches, a modification of the set of al-
ternatives and / or the outranking relation has to be performed in order to
obtain a choice recommendation. Another approach could be to modify the
outranking relation in order to make it transitive. In that case, as we will see
later in Section 5 in Property 6, there exists at least one dominating kernel.

The multiplicity of the kernels represents a further difficulty. One solution
could be to take the union of the kernels as a best choice recommendation.
Nevertheless, the union of kernels is not a kernel and Roy’s second condition
R2 can no longer be verified.

Therefore, instead of asking the set Y to be as small as possible, we prefer to
ask that the set of not selected alternatives by as large as possible and that
a best choice recommendation should be minimal for the choice problem (i.e.
not contain another best choice recommendation).

3.2 New principles

We can now write new principles for a best choice recommendation Y :
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• BMR1 Each alternative which is not selected must be considered as worse
as at least one alternative of Y (= R2).

• BMR2 The set of rejected alternatives must be maximal.
• BMR3 The best choice recommendation cannot contain another smaller

best choice recommendation.

3.3 An extension to the kernel of a digraph

The following Section shows the properties of the kernels in digraphs and
presents a generalised kernel, namely the hyper-kernel, which will be used
later in the P.α problem.

4 A procedure for solving the “best” choice problem

4.1 On hyper-kernels

4.2 Solving the choice problem

4.3 Examples

5 On kernels and hyper-kernels in graphs

Let us first start by introducing a few important concepts necessary for our
future discourse.

5.1 The outranking graph

Let X be a finite set of alternatives and R be a binary outranking relation
defined on X. We suppose that R is characterised by an ordinal valued bipolar
credibility domain R̃ : X × X → L = {−m, . . . , 0, . . . ,m}. If x and y are
two alternatives of X, R̃(x, y) > 0 means that x R y is more true than false;
R̃(x, y) < 0 means that x R y is more false than true; R̃(x, y) = 0 means that
x R y is either true or false. Let G̃(X, R̃) be the digraph representing this L-
valued outranking relation. The binary outranking relation R is build from R̃
as follows:

∀(x, y) ∈ X ×X : (x, y) ∈ R ⇐⇒ R̃(x, y) > 0
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As a consequence, we call G(X, R) the strict median cut crisp digraph associ-
ated to G̃.

The order n of the digraph G̃(X, R̃) is given by the cardinality of X, whereas
the size m of G̃ is given by the cardinality of R̃. As X is a finite set of n
alternatives, the size m of the digraph G̃ is also finite.

A digraph G̃ is said empty if and only if R̃ = ∅. On the opposite, a digraph
G̃ is said complete and noted Kn if and only if R̃ = X ×X. A digraph G̃ of
order n is said to be L-connected if the symmetric and transitive closure of its
associated strict median cut crisp digraph G equals Kn.

In the sequel, we assume that the digraphs are L-connected, i.e. that they
don’t have any isolated nodes.

We note Ck an intransitive oriented cycle of order k of a digraph. Ck is also
called a circuit of order k. Let A be a subset of nodes of X. The graph
G̃′(A, R̃|A), where R̃|A is the relation R̃ restricted to the nodes of A, is called
an induced subgraph of G̃.
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Fig. 1. Reference example

Reference example Throughout this paper we will use a reference example
of 6 alternatives which is given in the following table.

R̃ a b c d e

a 10 6 -10 -7 -9

b -8 10 9 10 0

c -10 -10 10 6 9

d 8 -8 -10 10 -7

e -10 -9 -7 -8 10

The strict median cut crisp digraph G(X, R) associated to the relation R̃ is
given on figure 1. It is a graph of order 5 and size 6, where X = {a, b, c, d, e}
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and R = {(a, b), (b, c), (b, d), (c, d), (c, e), (d, a)}. The nodes {a, b, d} induce a
graph which is a circuit C3. One should note here that it is impossible to
represent the richness of the bipolar valued characterisation R̃ in the crisp
graph G.

5.2 Dominant and absorbent choices

A non empty subset Y of X is called a choice in G̃. Such a choice Y is said to
be dominant if and only if either, Y = X, or x 6∈ Y ⇒ ∃y ∈ Y : R̃(y, x) ≥ 0.
Similarly, a choice Y is said to be absorbent if and only if either Y = X, or
x 6∈ Y ⇒ ∃y ∈ Y : R̃(x, y) > 0.

A choice, graph or relation is said to be qualified if it has a certain caracteristic
(the qualification). For example the property of dominance is a particular
qualification for a choice.

A qualified choice Y is called minimal if and only if ∀Y ′ ⊆ Y (Y ′ and Y
equally qualified), we have Y ⊆ Y ′. A qualified choice Y is called maximal if
and only if ∀Y ′ ⊇ Y (Y ′ and Y equally qualified) we have Y ⊇ Y ′.

Reference example If we consider the dominant or absorbant caracteris-
tics as qualifications, we can now consider minimal dominant and minimal
absorbent choices. In our reference example, we note four minimal dominant
choices: {a, b, e}, {a, c}, {b, c, d}, and {b, d, e} and four minimal absorbent
choices: {a, b, e}, {a, c, e}, {a, d, e}, and {b, d, e} (see figure 1).

The dominated closed neighborhood of a node x ∈ X, denoted Γ+(x), is the
union of x itself and of all nodes y ∈ X such that R̃(x, y) > 0. The absorbed
closed neighborhood of node x is denoted similarly Γ−(x) and consists of the
union of x and all nodes y ∈ X such that R̃(y, x) > 0. The dominated (ab-
sorbed) neighborhood of a choice Y is denoted Γ+(Y ) (Γ−(Y )) and consists
of the union of all dominated (absorbed) neighborhoods of the nodes of Y .

The dominated (absorbed) closed private neighborhood of a node x in a given
choice Y is written Γ+

Y (x) (Γ−
Y (x)) and consists of Γ+(x) \ Γ+(Y \ {x}) (resp.

Γ−(x) \ Γ−(Y \ {x})).

Reference example Node b in the choice {a, b, e} has closed private neigh-
borhoods Γ+

{a,b,e}(b) = {c, d} and Γ−
{a,b,e}(b) = {b} (see figure 1).

Property 1 Let G̃ = (X, R̃) be a digraph. In a minimal dominant (absorbent)
choice Y , every node y ∈ Y has a non empty dominated (absorbed) private
neighborhood Γ+

Y (y) (Γ−
Y (y)).
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Proof: Let us suppose that there exists indeed some node y′ ∈ Y such that
Γ+

Y (y) (Γ−
Y (y)) is empty. In this case we may remove this node from Y while

Y \ {y′} remains dominant (absorbent). This contradicts the hypothesis that
Y is minimal with this qualification. 2

Property 2 Every finite digraph contains at least one minimal dominant (ab-
sorbent) choice.

Proof: By definition, every digraph admits at least the trivial dominant and
absorbent choice Y = X. If this choice is not minimal, we can progressively
drop a finite number of nodes which have an empty private neighbourhood
until we necessarily get a dominant (absorbent) choice where all nodes have
a non empty private neighborhood. This choice is still dominant (absorbant)
and is mimimal with this quality. 2

Demonstration of property 2 is a constructive demonstration and it gives a
first algorithm for computing all minimal dominant (absorbent) choices in a
given digraph. We start from the greedy choice and try all possible droppings
of “redundant” nodes until we reach a minimal dominant (absorbant) choice.
An opposite strategy gives a second algorithm where one tries to construct a
dominant (absorbent) choice starting from the smallest possible choices, the
singletons. Here we try to add all possible “irredundant” nodes , i.e. nodes
which have non empty private neighborhoods.

5.3 Irredundant and independent choices

A dominant (absorbent) choice Y ⊆ X that contains only nodes which have
a non empty dominated (absorbed) private neighborhood is said to be irre-
dundant. All minimal dominant and absorbent choices are in fact irredundant,
they are even maximal for this quality.

Property 3 (CHM78) Let G̃(X, R̃) be a digraph. A choice Y in G̃ is minimal
dominant (absorbent) if and only if it is dominant (absorbent) and irredun-
dant.

Property 4 (BC79) Let G̃(X, R̃) be a digraph. A choice Y in G̃ is minimal
dominant (absorbent) if and only if it is maximal irredundant.

Proof: Let us suppose that Y is minimal dominant (absorbent) but not max-
imal irredundant. This implies that there exists a node x ∈ X \ Y such
that Y ∪ {x} is irredundant, i.e. Γ+(Y ) (resp. Γ−(Y )) is a proper subset of
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Γ+(Y ∪ {x}) (resp. Γ−(Y ∪ {x})). This contradicts however the fact that Y is
dominant (absorbent).

The other way round, let us suppose that Y is maximal irredundant but not
minimal dominant (absorbent). This implies that there exists a node y ∈ Y
such that Y \{y} remains dominant (absorbent), i.e. this y cannot have a pri-
vate neighborhood with respect to Y . This contradicts however the hypothesis
that Y is irredundant. 2

A choice is called independent if and only if either, Y is a singleton, or ∀x, y ∈
Y : R̃(x, y) < 0. One should notice here that independence is not based on
the negation of the positiveness of the outranking. Such a negation would
also include the couples of alternatives (x, y) for which R̃(x, y) = 0 holds.
Therefore, independence cannot be considered solely in the strict median cut
digraph associated to G̃. Consequently one can see that the median element
0 plays a very particular role in L.

a c

b ed

��� ���

��� ������
-

�������������1

J
J

JJ]
�

�
�

�	

�
�

��	

S
S

SSw

Fig. 2. {a, c}: independent dominant choice

Reference example The dominant choice {a, c} for instance is independent
(see figure 2).

5.4 Dominant and absorbent kernels

Independence and domination (absorbancy) are tightly related. A conjointly
dominant (absorbent) and independent choice is called a dominant (absorbent)
kernel (Ber70), (BPR05).

Property 5 (Ber58) Let G̃(X, R̃) be a digraph. A dominant (absorbent) ker-
nel Y in G̃ is a minimal dominant (absorbent) and maximal independent
choice.

Proof: Let us suppose that Y is indeed not a minimal dominant (absorbent)
choice. This implies that there exists a dominant (absorbent) choice Y ′ ⊂ Y
such that Y ′ is still dominant (absorbent). This implies that ∀y ∈ Y \Y ′ there
must exist some y′ ∈ Y ′ such that R̃(y, y′) > 0 (R̃(y′, y) > 0). This contradicts
the independent quality of the kernel Y .
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Let us now suppose that Y is not a maximal independent choice. This implies
that there must exist a Y ′ ⊃ Y such that Y ′ is still independent. As Y is a
kernel by hypothesis, it is a dominant (absorbent) choice, i.e. ∀y′ ∈ Y ′\Y there
must exist some y ∈ Y such that R̃(y, y′) > 0 (R̃(y′, y) > 0). This contradicts
the independent quality of Y ′. 2

It is important to see here that a dominant (absorbent) kernel is a minimal
dominant (absorbent) choice.

Furthermore one should notice that the set of minimal dominant (absorbent)
choices may be much larger than the set of dominant (absorbent) and inde-
pendent choices in a given digraph. In fact, as seen in Property 2, every finite
digraph admits at least one minimal dominant (absorbent) choice. Unfortu-
nately, the existence of an independent and minimal dominant (absorbent)
choice is not guaranteed.

Reference example We can see on figure 1 that the graph admits no inde-
pendent and absorbent choice.

Once again, Property 5 gives us two complementary algorithms for the deter-
mination of dominant (absorbent) kernels: a first algorithm starting with the
choice Y = X and a second algorithm starting with all the singletons.

A choice or relation in a digraph G̃(X, R̃) is said to have an L-property if it
has this certain caracteristic in its associated strict median cut crisp digraph
G(X, R).

In particular, the relation R̃ is L-transitive if the corresponding relation R is
transitive in G.

Let us have a look at this particular case, where the outranking relation R is
transitive. This is for example the case in a partial order or a weak order.

Property 6 Let G̃(X, R̃) be a digraph. If R̃ is L-transitive, a minimal domi-
nant (absorbent) choice is also independent.

Proof: As L-transitivity is defined in the strict median cut crisp digraph, let
us verify this property in G(X, R). Let us suppose that a minimal dominant
(absorbent) choice Y is not independent. This implies that there exists at
least one couple of nodes (y, y′) in Y × Y such that y R y′ (y′ R y). As Y is a
dominant (absorbent) choice, we know by property 1 that every node y ∈ Y
has a non empty dominated (absorbed) private neighbourhood. In particular,
Γ+

Y (y′) 6= ∅ (Γ−
Y (y′) 6= ∅). By transitivity, Γ+

Y (y) 6= ∅ (Γ−
Y (y) 6= ∅). Therefore,
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Y \ {y′} is also a dominant (absorbent) choice. This is hower in contradiction
with Y ’s minimality for the dominance (absorbence). 2

This gives us an indication on a solution to the choice problem. If the out-
ranking relation is transitive, a best choice recommendation can be given by
the concept of kernel. The kernel clearly verifies both principles R1 and R2.
Nevertheless, as already stated, in general the outranking relation is not tran-
sitive. In the sequel we present a further argument which shows that the kernel
cannot be a solution to the general choice problem.

A digraph G̃(X, R̃) is said to contain a L̃-circuit if its associated strict median
cut crisp graph G contains a circuit.

Not all digraphs have a dominant (absorbent) kernel. The following property
shows the reason for this absence.

Property 7 If a digraph G̃(X, R̃) has no dominant (absorbent) kernel, it con-
tains an intransitive L̃-circuit of odd order.

Proof: This property represents the contraposition of Richardson’s general
result: If a graph contains no circuit of odd order then it has a dominant
(absorbent) kernel (see Ber70). 2

This property leads us to think that the concept of kernel is too restrictive for
the choice problem. In the following Section we define in a very natural way
a more general structure which will help us to solve the choice problem.

5.5 Stable choices and hyper-kernels

A dominant (absorbent) choice Y in a digraph G̃(X, R̃) is said to be P.α-stable
if and only if the induced subgraph G̃Y (Y, R̃|Y ) does not admit any indepen-
dent dominant (absorbent) sub-choice Y ′ ⊂ Y . This means in particular that
an acceptable candidate for the choice problem should be P.α-stable.

Proposition 1 Let G̃(X, R̃) be a digraph. A stable minimal dominant (ab-
sorbent) choice Y in G̃ is either independent or induces a sub-graph G̃Y (Y, R̃|Y )
which contains some L-intransitive L-circuits of odd order.

Proof: Every L-transitive and/or L-acyclic digraph admits a non empty set
of minimal dominant and absorbent choices that are, according to Property 6,
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necessarily all independent. So let us suppose that G̃ is not a transitive or
acyclic digraph. The observed dominant (absorbent) and independent choices
are naturally stable choices. Let us suppose that besides these, the graph
G̃ contains a set of non independent minimal dominant (absorbent) choices.
Each of these choices taken individually induce a non-empty subgraph. These
subgraphs don’t have any dominant (absorbant) kernels because they are min-
imally dominant (absorbant). According to Property 7, they contain at least
one intransitive L-circuit of odd order. 2

Reference example We can observe that the choice {a, b, d, e} is simul-
tanously a minimal stable dominant and a minimal stable absorbent choice
(see figures 3 and 4).
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Fig. 3. A minimal stable dominant choice: {a, b, d, e}
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Fig. 4. A minimal stable absorbent choice: {a, b, d, e}

Proposition 1 naturally leads us to define the concept of hyper-independence.
A choice Y in G̃ is said to be hyper-independent if it consists of disjoint L-
intransitive L-circuits Cp of odd order (p = 1, 3, . . .) 5 . Consequently a dom-
inant (absorbent) hyper-kernel is a hyper-independent dominant (absorbent)
choice. Figures 3 and 4 show a dominant and an absorbent hyper-kernel con-
sisting of a C3 ({a, b, d}) and a C1 ({e}).

Property 8 Let G(̃X, R̃) be a digraph. A dominant (absorbent) hyper-kernel
Y is maximal hyper-independent.

5 Singletons are considered as circuits of order 1.
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Proof: In case G̃ has no circuits of odd order p > 1, Property 5 applies. In
general, let us suppose that a dominant (absorbent) hyper-kernel Y is hyper-
independent, but not maximal for this quality. This implies that there must
exist a circuit Cp of odd order p in X ⊆ Y such that Y ∪Cp is a again hyper-
independent. The odd circuit Cp was thus not included in the dominated
(absorbed) neighbourhood of Y . This contradicts the assumption that Y is
dominant (absorbent). 2

Proposition 2 Let G̃(X, R̃) be a digraph. A dominant (absorbent) hyper-
kernel is a stable minimal dominant (absorbent) choice Y .

Proof: Following directly from the definition of a stable minimal dominant
(resp. absorbent) choice. 2

The following section deals with an algebraic approach to the determination
of kernels in a digraph.

6 Algebraic approach to the determination of kernels in digraphs

In this section we recall results from (BPR05).

6.1 The kernel equations

A choice Y in a digraph G̃ can be characterised by a membership function for
each alternative of X. Formally, a characteristic vector Ỹ (·) of a choice Y is an
application from X to L, i.e. a row vector [Ỹ (x), x ∈ X]. For any x in X, Ỹ (x)
can be interpreted as the degree of credibility of the assertion “alternative x
belongs to the choice Y ”.

We now recall the kernel equations which will help us to determine the kernels
of the digraph G̃.

(Ỹ ◦ R̃)(x) = max
y 6=x

[min(Ỹ (y), R̃(y, x))] = −Ỹ (x) (1)

(R̃ ◦ Ỹ t) = max
y 6=x

[min(R̃(x, y), Ỹ (y))] = −Ỹ (x) (2)

where Ỹ t(·) is the transposed characteristic vector. Let Ydom (Yabs) be the set
of solutions of the dominant kernel equations (1)(absorbent kernel equations
(2)).
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6.2 Properties of the solutions of the kernel equations

A L-determined solution Ỹ (·) of the kernel equations is a solution of the kernel
equations for which Ỹ (x) 6= 0 for each x in X. Let Ydom

0 (Yabs
0 ) be the set of

L-determined solutions of the dominant kernel equations (absorbent kernel
equations).

Let Ỹ1(·) and Ỹ2(·) be two elements of Ydom
0 (or Yabs

0 ). Ỹ1(·) is said to be
at least as sharp as Ỹ2(·) (Ỹ2(·) � Ỹ1(·)) if and only if for all x in X either
Ỹ1(x) ≤ Ỹ2(x) < 0 or 0 < Ỹ2(x) < Ỹ1(x).

An L-dominant (L-absorbent) kernel is a vector Ỹ (·) which is an L-determined
solution of the dominant (absorbent) kernel equation system and which is
maximal with respect to the sharpness relation �. Let Fdom(G̃) (Fabs(G̃)) be
the possibly empty set of L-dominant (L-absorbent) kernels of G̃.

To each element Ỹ (·) of Fdom(G̃) (Fdom(G̃)) one can associate its strict median
cut crisp choice Y . This choice has also a binary characteristic vector Y (·) for
which Y (x) = 1 if and only if Ỹ (x) > 0. Let Fdom

>0 (G̃) (Fabs
>0 (G̃))be the set of

these crisp choices.

It has been shown in (BPR05) that there exists an isomorphism between the
solutions Fdom

>0 (G̃) (Fabs
>0 (G̃)) and the dominant (absorbent) kernels of the

strict median cut crisp graph G linked to G̃.

This result is summarised in figure 5.

-

?
-

?

G̃ G

Fdom(G̃) Fdom
>0 (G̃)

Fig. 5. Kernels in G̃ and G

Nevertheless, one should not overestimate this result. In case the outranking
relation R̃ associated to G̃ contains 0 values, there may be non-determined
solutions to the kernel equations. In that case, this theorem does not apply.
This points out once more the particular position of the median value 0 in L.
It is a value of undetermination.

In the following Section, we return to the main subject of this paper, namely
the choice problem (or P.α problem).
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7 Solving the P.α problem by using hyper-kernels

The concept of hyper-kernel has been introduced in Section 5. We see in this
Section how to determine the dominating (absorbent) hyper-kernels of a graph
G̃(X, R̃).

8 Conclusion

. . .
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