Content	Automorphism groups of digraphs	Graph kernels	St-Nicolas Graphs 0 0000000	Looking for St-Nicolas graphs 00000 0000	Content	Automorphism groups of digraphs	Graph kernels 0000 00000	St-Nicolas Graphs 0 0000000	Looking for St-Nicolas graphs 00000 0000		
	0000		0			0000		0			
							Plan				
					Automorphism groups of digraphs Graphs and digraphs						
On unlabelled kernels of a digraph Some empiric results						Subdigraphs Regular digraphs					
	501	ne empirie i	courto		C-	Automorphisms of dig	rapiis				
	Ra	aymond Bis	dorff		Graph kernels Kernels in digraphs Kernel orbits and unlabelled kernels						
	Univ	versity of Luxer	nbourg		St-Nicolas Graphs St-Nicolas Graphs						
	4th Workshop on	Classificatio	n, December 6	2005	Andrásfai Graphs Characterising St-Nicolas graphs						
					Looking for St-Nicolas graphs Circulant graphs and cycles						
					Characterising the symmetry of kernels						
Content	Automorphism groups of digraphs	Graph kernels 0000 00000	St-Nicolas Graphs 0 0000000 0	Looking for St-Nicolas graphs 00000 0000	Content	Automorphism groups of digraphs	Graph kernels 0000 00000	St-Nicolas Graphs 0 0000000 0	Looking for St-Nicolas graphs 00000 0000		
Graphs and digraphs						Special subgraphs					

Graphs and digraphs

Definition

- A digraph G(X, R) consists of a vertex set X and a binary relation R defined on X.
- A digraph G(X, R) where R is irreflexive and symmetric is also called a (simple) graph.
- A complete graph with *n* vertices is noted K_n . We denote C_n the symmetric cycle on n vertices.
- A circulant graph, denoted $Circ(\mathbb{Z}_n\{r, s, \ldots\})$, is a digraph with *n* vertices enumerated $0, 1, \ldots, n-1$ such that each vertex *i* is linked to vertex $i + r \mod n$, $i + s \mod n$ etc.

Definition

- A subdigraph of a digraph G(X, R) is a digraph G'(Y, S)such that $Y \subseteq X$ and $S \subseteq R$. If X = Y, G' is called a spanning subdigraph.
- A subdigraph is called an induced subdigraph if y S y' in G' if and only if yRy' in G.
- · A clique is an induced subdigraph that is complete. An independent set is an induced empty subdigraph.

Content	Automorphism groups of digraphs	Graph kernels 0000 00000	St-Nicolas Graphs 0 0000000 0	Looking for St-Nicolas graphs 00000 0000	Content	Automorphism groups of digraphs 0 0 0 0 0 0 0 0 0 0 0 0 0	Graph kernels 0000 00000	St-Nicolas Graphs 0 0000000 0	Looking for St-Nicolas graphs 00000 0000
	Re	gular digr	raphs			Isom	orphic di	graphs	

Definition

- The number of predecessors (resp. successors) of a vertex x in R is called its in-degree, resp. its out-degree.
- The number of neighbors of a vertex x in a graph, is called its degree.
- A k-regular graph is a graph such that each vertex has degree k.
- C_n has degree 2, K_n has degree n 1. A 3-regular graph is called cubic.

Definition

- Two digraphs are equal if they have the same vertex set X and support the same relation R.
- Two graphs G(X, R) and G'(Y, S) are isomorphic if there is a bijection $\Phi: X \to Y$ such that $x \operatorname{R} x'$ in G if and only if $\Phi(x) \operatorname{S} \Phi(x')$ in G'.



Automorphism group

Definition

- An isomorphism from a digraph G to itself is called an automorphism of G.
- The set of automorphisms of a digraph G is a group called the automorphism group of G and denoted Aut(G).

Comment

 It is in general a nontrivial task to decide whether two digraphs are isomorphic or that a digraph has no non-identity automorphism.

Automorphism group (continue)

Definition

- The distance $d_G(x, y)$ between two vertices in a digraph G is the length of the shortest path from x to y.
- The complement \overline{G} of a digraph G(X, R) has the same vertex set X associated with the complement relation \overline{R} .

Proposition

- If x and y are two vertices of G and $g \in Aut(G)$, then $d_G(x, y) = d_{G^g}(x^g, y^g)$.
- The automorphism group of a digraph is equal to the automorphism group of its complement.

Automorphism groups of digraphs	Graph kernels	St-Nicolas Graphs	Looking for St-Nicolas graphs	Automorphism
0	0000	0000000	00000	0
0000		0		0000

Isomorphic subdigraphs

Proposition

- Aut(G) is a subgroup of the permutation group Sym(X) of the vertex set X. In fact Aut(K_n) only permutes vertices with identical in- and out-degrees.
- If G'(Y, S) is a subdigraph of G and $g \in Aut(G)$, then $G'^g(Y^g, S^g)$, such that $Y^g = \{y^g : y \in Y\}$ and $S^g = \{(x^g, y^g) : xSy\}$, is isomorphic to G'(Y, S).

Definition

Let G(X, R) be a digraph.

- A dominant (absorbent) choice in G is a non empty subset Y of X such that for all x ∈ X − Y, ∃y ∈ Y : y Rx (x Ry).
- A choice Y in G is independent if for all $x, y \in Y, x Ry$.

Graph kernel

Kernels in digraphs

• A dominant (dominated) and independent choice Y in G is called a dominant (absorbent) kernel of G.

Comment

In symmetric digraphs the kernel concept corresponds to maximal independent sets (Berge 1958).

The kernel equation system

Definition

Let G(X, R) be a digraph and Y a choice function on X. If we denote \overline{Y} the complement choice function :

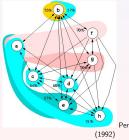
 $Y \circ R = \overline{Y}$ (1), $R \circ Y = \overline{Y}$ (2)

represent the dominant, resp. absorbent, kernel characteristic systems.

Proposition (Berge 1958)

The solutions to these equation systems (1) and (2) deliver all dominant and absorbent kernels in a digraph.

Kernels in a valued outranking relation



Perny's car selection problem

Complexity of the kernel extraction

Comment

- The number k of kernels in a digraph may get very large, even huge. For a digraph of order n > 20, k is bounded by 3^{n/3} (Tomescu 1990).
- Disjoint unions of K₃ give the graphs with the maximum number of kernels !
- But high kernel multiplicity arrives also with connected, but highly symmetric graphs.
- If C₂₀ admits 277 kernels, C₃₀ already admits 4610 kernels!
- But many of these solutions are in fact isomorphic !

Kernel orbits and unlabelled kernels

Definition

Let ${\mathcal K}$ be the set of all kernels (dominant and absorbent) observed in a digraph ${\mathcal G}.$

- If Y is a dominant or absorbent kernel of G and g ∈ Aut(G), then Y^g is a corresponding kernel in G^g. Y and Y^g are called isomorphic kernels.
- The subsets of mutually isomorphic kernels in $\ensuremath{\mathcal{K}}$ are called kernel orbits.

Proposition

- Each kernel belongs to a unique orbit, i.e. the set of isomorphic copies of itself.
- The orbits give a partition of *K*, where the individual components are called <u>unlabelled kernels</u>.

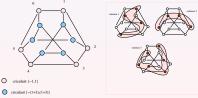
Content	Automorphism groups of digraphs	Graph kernels	St-Nicolas Graphs	Looking for St-Nicolas graphs	Automorphism groups of digraphs	Graph kernels		Looking for St-Nicolas graphs
	0		0		0		0	
	0	00000	0000000	0000	0	00000	0000000	0000
	0		0		0		0	

Petersen graph

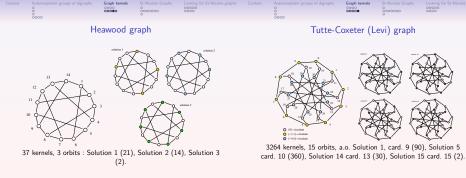
Franklin graph



15 kernels, 2 orbits : Solution 1 (10), Solution 2 (5).



17 kernels, 3 orbits : Solution 1 (12), Solution 2 (3), Solution 3 (2).



Content	Automorphism groups of digraphs 0 0 0000	Graph kernels 0000 00000	St-Nicolas Graphs	Looking for St-Nicolas graphs 00000 0000	Content	Automorphism groups of digraphs 0 0 0 0000	Graph kernels 0000 00000	St-Nicolas Graphs	Looking for St-Nicolas graphs 00000 0000
	St-I	Vicolas G	raphs			Ar	ndrásfai gi	raphs	

St-Nicolas Graphs

Definition

We call St-Nicolas Graph a digraph of order n supporting a unique kernel orbit of size n.

Proposition

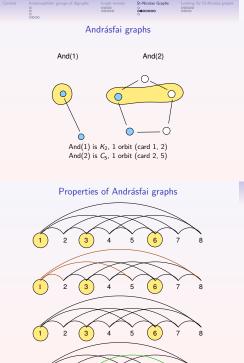
- All K_n are St-Nicolas graphs.
- C₅ is also a St-Nicolas graph.

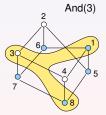
Comment

What properties characterise the St-Nicolas graphs?

Definition

- Let C be the subset of N_{3k−1} elements congruent to 1 modulo 3.
- The circulant graphs Circ(Z_{3k−1}, C) for k ≥ 1 are named after Bela Andrásfai.





And(3) is a Möbius 4-ladder, 1 orbit (card 3,8)

Content	Automorphism groups of digraphs	Graph kernels 0000 00000	St-Nicolas Graphs	Looking for St-Nicolas graphs 00000 0000

Kernel properties of the Andrásfai graphs

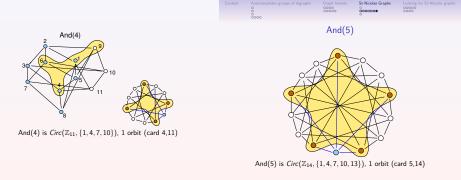
Let And(k) be an Andrásfai graph of order k.

Proposition

- 1. And(k) admits k kernels.
- There exists a bijective correspondence between kernels and vertices.
- Each kernel admits a central symmetry axis which devides by two the order of Aut(And(k)) = 2k.

Corollary

The Andrásfai graphs And(k) are St-Nicolas graphs for $k \ge 1$.

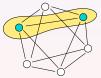


Content	Automorphism groups of digraphs	Graph kernels	St-Nicolas Graphs	Looking for St-Nicolas graphs	Content	Automorphism groups of digraphs	Graph kernels	St-Nicolas Graphs	Looking for St-Nicolas graphs
	0	0000	0000000	00000		0	0000	0000000	00000
	00000		•			0000		0	

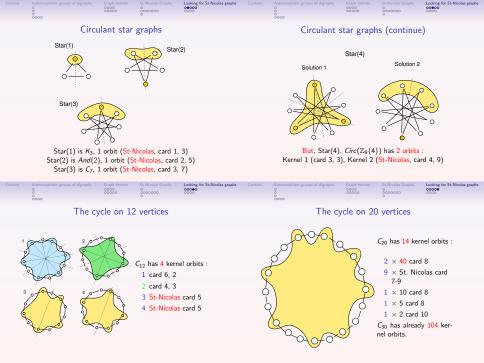
Characterising St-Nicolas graphs

- Properties that don't or may not necessarily characterise the St-Nicolas class of graphs :
 - 1. Having a specific diameter,
 - 2. Being reduced or not,
 - 3. Being triangle-free,
 - 4. Being a Cayley graph?
- · Properties that necessarily characterise this class :
 - 1. The fact of being a single circulant graph,
 - 2. There exists a bijective correspondence between kernels and individual vertices,
 - 3. The kernels admit a unique central symmetry axis.

Octahedral graph



The octahedral graph, the circulant $\{2,-2\}$ on 6 vertices, has 1 orbit, (card 2, 3)



Automorphism groups of digraphs 0 0 0 0000	Graph kernels 00000 00000	St-Nicolas Graphs 0000000 0	Looking for St-Nicolas graphs 00000 0000	Content	Automorphism groups of digraphs 0 0 0 0000	Graph kernels 0000 00000	St-Nicolas Graphs	Looking for St-Nicolas grap 00000 0000
0000					0000			

Cycles of prime order

Definition

We denote S_s^k (with $s \ge 0$ and $k \ge 1$), k kernel orbits based on s central symmetry axes. A St-Nicolas digraph is S_1^1 .

Proposition

 C_k for k = 3, 5, 7 is S_1^1 (St-Nicolas)

- C_{11} is S_1^2 (St-Nicolas)²
- C_{13} is S_1^4 (St-Nicolas)⁴
- $\textit{C}_{17}~\textit{is}~\mathcal{S}_0^1 + \mathcal{S}_1^5$
- C_{19} is $S_0^2 + S_1^7$ C_{23} is $S_0^8 + S_1^{12}$

Proposition

- C_9 is $S_1^1 + S_3^1$
- $Circ(\mathbb{Z}_9, \{1, 3\})$ is S_1^1 (St-Nicolas)
- C_{10} is $S_1^1 + S_2^1 + S_5^1$
- Circ(ℤ₁₀, {1, 2, 5}) is S¹₁ (St-Nicolas)
- C_{12} is $S_1^2 + S_4^1 + S_6^1$
- Circ(ℤ₁₂, {1, 4, 6}) is S¹₁ (St-Nicolas)
- C_{20} is $S_0^2 + S_1^9 + S_2^1 + S_4^1 + S_{10}^1$
- Circ(ℤ₂₀, {1, 2, 4, 10}) is S³₁ (St-Nicolas)³

Content	Automorphism groups of digraphs 0 0 0 0000	Graph kernels 0000 00000	St-Nicolas Graphs 0 0000000 0	Looking for St-Nicolas graphs 00000 0000	Content	Automorphism groups of digraphs 0 0 0 0 0000	Graph kernels 0000 00000	St-Nicolas Graphs 00000000 0	Looking for St-Nicolas graphs 00000 0000
---------	--	--------------------------------	--	--	---------	---	--------------------------------	------------------------------------	--

The St-Nicolas conjecture

Conjecture

- All cycles C_n of prime order $n \ge 3$ admit unlabelled kernels only of class $S_0^p + S_1^q$, with $p \ge 0$ and $q \ge 1$;
- The circulant graph Circ(2_m, {r, s,...}) corresponding to a cycle C_n supporting a positive number of kernel orbits with r, s, ..., symmetry axes, admit unlabelled kernels only of class S⁰_c + S⁰_c, with p > 0 and q > 1.

Concluding remarks

Kernel orbits of circulant graphs

- Kernel orbits and unlabelled kernels
- The symmetry class of unlabelled kernels
- The St-Nicolas graphs
- Characterising the symmetry in circulant graphs
- The St-Nicolas conjecture

