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Comparing statistical distributions

• Given two sequences of random numbers, we can ask the
question : “Are the two sequences drawn from a same random
number generator, or from different generators ?”

• In proper statistical terms : “Can we disprove, to a certain
required level of significance that two data sets are drawn
from the same population distribution function ?”

• Disproving the null hypothesis proves that the data are from
different random distributions.

• Failing to disprove, on the othe hand, only shows that the
data sets appear to be consistent with being generated from a
same distribution function.
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Methodological approach

Four problems may appear from two dichotomies :

1. The data are either :

1.1 continuous, or
1.2 binned.

2. We wish to compare either

2.1 one data set to a known distribution, or
2.2 two equally unknown data sets.
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Statistical tests

• The usual test for differences between binned data is the Chi-square
goodness-of-fit test.

• For continuous data as a function of a single variable, the usual test
is the Kolmogorov-Smirnov test.

• One can always turn continuous data into binned data, by grouping
the observed data into specified ranges of the continuous variable(s).

• There is however often some arbitrariness as how the bins should be
chosen ; how many bins, with equal sizes or not ?

• Furthermore, binning always involves some loss of information. Even
more, when uniform distributions of observations are not verified
within all bins.

• Mind that statistical summaries are not truthful per se. They are
merely numerical or graphical arguments supporting one or the
other hypothesis concerning the observed data.
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Chi-square test against a known distribution

• Consider a random sequence grouped into υ bins.

• Suppose that Ni is the number of events observed in the ith bin,
and that ni is the number of expected events according to some
known distribution. Note that the Ni ’s are integers, while the ni ’s
may not be.

• Then the Chi-square “goodness-of-fit” test statistic is :

χ2 =
υ∑

i=1

(Ni − ni )
2

ni

where the sum runs over all υ bins.

• A value of χ2 � υ indicates that a “goodness-of-fit” is rather
unlikely.
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Uniformity Chi-Square goodness-of-fit Test in R

Let us test if the R runif generator is giving consistent data with a uniform
distribution. The R chisq.test method implements this goodness-of-fit test.

> nSim = 10^4

> x = runif(nSim)

> freq = hist(x)

> Ni = freq$counts

> upsilon = length(Ni)

[1] 20

> ni = rep(nSim/upsilon,upsilon)

> chi2 = sum((Ni-ni)^2/ni)

[1] 18.4988

> df = upsilon - 1

> pvalue = 1.0 - pchisq(chi2,df)

[1] 0.4893842

> chisq.test(Ni)

X-squared = 18.4988 df = 19

p-value = 0.4893842
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Chi-square Test – continue

• Any term i with 0 = ni = Ni should be omitted from the sum.

• A term with ni = 0 and Ni 6= 0 gives an infinite χ2, as it
should, since in this case the Ni ’s cannot possibly be drawn
from these ni ’s.

• The P(χ2|υ) probability function with degree of freedom υ is
the probability that the sum of the squares of υ standard
Gaussian variables of unit variance and 0 mean will be greater
than χ2.

• The terms in the sum of the χ2 measure are only good
approximations of squares of random standard normal
variables when Ni � 1 in each bin.

• Usually, the binning process gives a constrained last bin
content. Hence, the degree of freedom of P(χ2|υ) is only
υ − 1 !
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Significance of the goodness-of-fit test

• The P(χ2|υ) probability function gives via the p-value a good estimate for the
actual significance of the chi-square goodness-of-fit test.

• The p-value equals the probability that the Chi-square test may give, under the
“goodness-of-fit” hypothesis, a result greater or equal than x :
P(χ2|υ ≥ x) = 1.0− P(χ2|υ ≤ x).

• The higher, resp. the smaller, the p-value, the more the goodness-of-fit is likely,
resp. unlikely.

• If a certain significance level is required, like 95% for instance, then the
goodness-of-fit hypothesis is rejected if the p-value is smaller than 5%.

Source : https ://en.wikipedia.org/wiki/P-value
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Exercise (Chi-square ”goodness-of-fit” tests)

1. How to apply a Chi-square ”goodness-of-fit” tests to samples
taken with a B(2, 2) random number generator ?

2. How to check the accuracy of random sampling from the
empirical random law shown on slide 12/34 of lecture 3 ?

3. May the random sequences obtained with a Mersenne twister
RNG versus the ones obtained from a linear congruational
RNG be discriminated by the Chi-square ”goodness-of-fit”
test ?

4. What is the distribution of p-values for samples of size
n = 104 of uniform random numbers generated with
runif(n) ?
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Checking goodness-of-fit of a B(2, 2) sample

> par(mfrow=c(2,1))

> nSim = 10^4

> xb = rbeta(nSim,2,2)

> h = hist(xb,breaks=50,plot=F)

> plot(h$mids,h$counts)

> thcounts =

+ dbeta(h$mids,2,2)*0.02*nSim

> lines(h$mids,thcounts,col="red")

> plot(thcounts,h$counts)

> abline(0,1,col="red",lwd=2)

> Ki2=sum((h$counts-thcounts)^2/thcounts)

[1] 46.494

> pval = 1-pchisq(Ki2,length(h$counts)-1)

[1] 0.5753

> chisq.test(h$counts,

+ p=dbeta(h$mids,2,2)*0.02,rescale.p=T)

X-squared = 46.503, df = 49,

p-value = 0.5749
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Comparing two binned data sets of same size

• Let Ri be the number of events observed in the ith bin for the first
data set, and let Si be the number of events in the same bin for
data set two.

• Then the chi-square “goodness-of-fit” test statistic is :

χ2 =
υ∑

i=1

(Ri − Si )
2

Ri + Si

where the sum runs over all υ bins.

• If the data were collected in such a way that the sum of Ri ’s is
necessarily equal to the sum of the Si ’s, then the number of degrees
of freedom is one less than the number υ of bins.
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Comparing two binned data sets of different size

• Let Ri be the number of events observed in the ith bin for the first
data set, and let Si be the number of events in the same bin for
data set two.

• Then the chi-square “goodness-of-fit” test statistic is :

χ2 =
υ∑

i=1

(
√

S/RRi −
√

R/SSi )
2

Ri + Si

where R :=
∑

i Ri and S :=
∑

i Si .

• The number of degrees of freedom is still one less than the number
υ of bins.
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Problem with small number of counts

• When significant fractions of bins have a small number of counts
(6 10, say), then χ2 statistics are not well approximated by a
chi-square probability function.

• Under the “goodness-of-fit” hypothesis, the count in an individual
bin, Ni , is following a Poisson law with λ = ni and each term
(Ni − ni )

2/ni has µ = 1 and σ2 = 2 + 1/ni .

• Each term in the χ2 statistic adds, on average, 1 to its value, and
slightly more than 2 to its variance.

• But, the variance of the chi-square probability function is exactly
twice its mean. If a significant fraction of ni ’s are small, then quite
probable values of the χ2 statistic will appear to lie farther out on
the tail than they actually are.

• Thus, the “goodness-of-fit” hypothesis may be rejected even when
it is true.
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Remedies with small number of counts

• Regroup the bins with small number of counts.

• When υ, the number of bins, is large (> 30), the central limit
theorem implies that the χ2 statistic gets approximately a Gaussian
distribution :

χ2  N
(
υ,
[
2υ +

∑

i

n−1
i

]1/2
)
,

and p-values may be computed as a complement of the
corresponding cumulated Gaussian distribution function.

• In the case of two binned data sets :

∑

i

n−1
i →

[ (R − S)2

RS
− 6
]∑

i

1

Ri + Si
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Remedies for small number of counts in R

A P(χ2|υ) cdf may be approximated with a Gaussian cdf when
υ > 30 as shown in R plot below.

> breaks = seq(0,1,0.025)

> freq = hist(x,breaks)

> Ni = freq$counts

> upsilon = length(freq$breaks)-1

> ni = rep(Nsim/upsilon,upsilon)

> chi2 = sum((Ni-ni)^2/ni)

[1] 36.96

> df = upsilon - 1

> pvalue = 1.0 - pchisq(chi2,df)

[1] 0.5632565

> sigma = sqrt(2*df+sum(1/ni))

> npvalue = 1.0 -

+ pnorm(chi2,df,sigma)

[1] 0.5912447

17 / 26

Content of the lecture Methodology Comparing histograms Comparing continuous distributions

RNG Quality : Testing equidistribution

Let 〈Un〉 = [u0, u1, u2, ...] be a sequence of random numbers from the
float interval [0.0; 1.0) apparently generated in a uniformly manner.
To test the quality of the random generator, we consider the auxiliary
sequence 〈Yn〉 = [y0, y1, y2, ...] defined by the rule yn = bd × unc, where
d is a positive integer – usually 64, 100, or 128 – also called the discrete
grain of the generator.
When sequence 〈Un〉 is indeed uniformly distributed, we will observe a
sequence 〈Yn〉 of equidistributed integers between 0 and d − 1.
The quality of a given random generator may now be assessed with a
two-tailed Chi-square “goodness-of-fit” test between the empirical Ni

distribution and the theoretical uniform ni = 1/d distribution.

A p -value below 5% or above 95% indicates the very likeliness of a

suspicious non-randomness in 〈Un〉.
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RNG Quality : Serial test

• We reconsider the auxilliary 〈Yn〉 sequence with discrete grain
d and count the number of times the pair (y2j , y2j+1) = (q, r)
occurs, for 0 ≤ j < n/2, q 6= r and 0 ≤ q, r ≤ d .

• These counts are to be made for each pair of integers (q, r)
with 0 ≤ q, r ≤ d , and the Chi-square “goodness-of-fit” test
is applied to these k = d2 categories with theoretical uniform
relative frequency 1/d2 in each category.

• To keep the length n of the random sequence large compared
to k , d will be chosen of smaller value than for the
equidistributional test.
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RNG Quality : Gap test

• Another test is to examine the length of “gaps” between occurences
of uj in a certain range. If α and β are two real numbers with
0 ≤ α < β ≤ 1, we want to consider the lengths of consecutive
subsequences [uj , uj+1, ..., uj+r ] in which the consecutive r values
uj+k , for k = 1, ...r , remain between α and β. This situation will be
counted as a gap of length r .

• With given values α and β and a maximal gap length t, let Cr for
r = 0, ..., t − 1 count the occurences of gaps of length 0, ..., t − 1,
and Ct the gaps of length r ≥ t. If p = β − α, the theoretical
counts for each gap length r , is pr = p(1− p)r for 0 ≤ r < t − 1
and pt = (1− p)t .

• Again, a Chi-square “goodness-of-fit” test, comparing the Cr with
the pr distribution may be used in order to assess the likeliness of a
suspicious non-randomness of the gap lengths observed in the
sequence 〈Un〉.
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RNG Quality : Coupon collector’s test

• This test relates the frequency test to the previous gap test. We use
the auxiliary sequence 〈Yn〉 and we observe the lengths of
subsequences yj+1, yj+2, ..., yj+r that are required to get a complete
set of integers – a coupon collector seqment – from 0 to d − 1.

• With a given maximal subsequence length t, let Cr for
r = d , ..., t − 1 count the occurences of coupon collector segments
of length d , d + 1, ..., t − 1, and Ct the segments of length r ≥ t.

• The theoretical count for each coupon collector segment of length r ,
is

pr =
d!

d r

{r − 1
d − 1

}
, d ≤ r < t − 1; pt = 1− d!

d r

{r
d

}
.

• Similarly, a Chi-square “goodness-of-fit” test, comparing the
empirical Cr with the theoretical pr distribution, may be used in
order to assess the likeliness of a suspicious non-randomness of the
coupon collector segments.
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RNG Quality : Up and down runs test

• A sequence 〈Un〉 of uniform random numbers may also be tested for
“runs up” and “runs down” segments, by examining the length of
monotone portions of it. Let [uj+0, uj+1, ..., uj+r ] be a subsequence
of length r such that either uj+0 ≥ uj+1 ≥ ... ≥ uj+r , or,
uj+0 ≤ uj+1 ≤ ... ≤ uj+r .

• Given a maximal subsequence length t, let Cr for r = 1, ..., t − 1
count the occurences of separated monotone, either up, or, down
runs of length 1, 2, ..., t − 1, and Ct the same runs of length r ≥ t.

• Assuming that a monotone run of length r occurs with probability
1/r !− 1/(r + 1)!, the theoretical relative count for each length r ,
gives pr = 1/r !− 1/(r + 1)! for r < t and pt = 1/t!.

• And, again, we may use a Chi-square “goodness-of-fit” test,
comparing the empirical Cr with the theoretical pr distribution, for
assessing the likeliness of a suspicious non-randomness of “runs up”
or “runs down” segments.
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Kolmogorov-Smirnov Test

• The ordered list of data points is converted into a cumulative
distribution function of the probability distribution from which it has
been drawn.

• If the N events are located at points xi , i = 1, ...,N, then SN (x) is
giving the fraction of points to the left of a given value x .

• The Kolmogorov-Smirnov statistic D is defined as the maximum
value of the absolute difference between two cumulative distribution
functions.

• When comparing SN (x) to a known cdf P(x), the K-S statistic is

D = max
−∞<x<+∞

|SN (x)− P(x)|

• For comparing two different cdf’s, the K-S statistic is

D = max
−∞<x<+∞

|SN1 (x)− SN2 (x)|
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Kolmogorov-Smirnov Test – continue

• Testing the p-value significance of the K-S test is done with the
complement QKS (z) = 1− PKS (z) of the cdf PKS (z) of the K-S
distribution for z > 0 :

PKS (z) = 1− 2
∞∑

j=1

(−1)j−1exp(−2j2z2)

• The K-S statistic is invariant under reparametrization of the data
set points. D remains the same when locally stretching and sliding
the x axis. Using for instance x or log x in D will result in the same
significance of the test.
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Kolmogorov-Smirnov Test in R

• The D observed and its p-value as disproof of the null hypothesis
that the distributions under review are the same is given by the R
ks.test procedure.

> x = rnorm(50)

> ks.test(x,"pnorm")

D = 0.101, p-value = 0.6498

> y = runif(30,-2.5,2.5)

> plot(ecdf(x),col="blue")

> plot(ecdf(y),add=T,col="red")

> ks.test(x,y,exact=T)

D = 0.3267, p-value = 0.02926
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