Theory 1 0000 000

Recommender Syster

Conclusions

Introduction

Best multiple criteria choice: the Rubis outranking method MICS: AlgorithmicDecision Theory

Recommender System

Outranking

•00000000

Raymond Bisdorff University of Luxembourg April 14, 2013 1/46

The outranking situation

Definition

- We say that "a decision alternative *a* outranks a decision alternative *b*" if and only:
 - 1. There is a weighted majority of criteria (or objectives) who warrant that *a* is perceived at least as good as *b* and,
 - 2. No considerable negative performance difference is observed between *a* and *b* on any criterion (or objective).
- We say that "a decision alternative *a* does not outrank a decision alternative *b*" if and only if:
 - 3. There is only a weighted minority of criteria (or objectives) who warrant that *a* is perceived at least as good as *b* and,
 - No considerable positive performance difference between a and b is observed on any criterion (or objective).
- Cases (2), respectively (4), are called veto, respectively counter-veto situations.

1. Compare with potentially conflicting criteria

Outranking

Introduction

The outranking situation Taking into account the performances' imprecision Taking into account large performance differences

 Theoretical foundation of the outranking approach Overall preference concordance Taking into account vetoes The bipolar-valued outranking relation

3. The Rubis best choice recommender system

RUBIS: a best choice recommender system Resolving the complete best office choice problem The RUBIS best choice recommendation

2 / 46

Best office choice

- Let us reconsider the best office choice problem from lecture 5.
- Below the performances of the seven potential office sites with respect to the three objectives:

Site	Costs (in €)	Turnover (0-81%)	Work Cond. (0-19%)
А	-35 000	70.6	10.2
В	-17 800	29.5	9.9
С	-6 700	43.8	3.6
D	-14 100	42.3	10.0
Е	-34.800	49.1	15.7
F	-18 600	16.1	4.8
G	-12 000	49.1	10.4

Recommender Syste

Conclusions

Certainly confirmed outranking situation

Example

- The CEO of the SME judges the "*Costs*" and the cumulated "*Benefits*" objectives ("*Turnover*" and "*Working Conditions*") to be equi-significant for selecting the best office site.
- Hence, he considers that a concordant preferential judgment with respect to "*Costs*" and one of the two "*Benefits*" objectives is significant for him.

Example

Site	Costs	Turnover	Work Cond.
	(in €)	(0-81)	(0-19)
G	-12 000	49.1	10.4
F	-18 600	16.1	4.8

 Site G certainly outranks site F as G is at least as well performing than F on all three objectives (unanimous concordance = Pareto dominance).

Positively confirmed outranking situation

Example

Site	Costs (in €)	Turnover (0-81)	Work Cond. (0-19)
С	-6 700	43.8	3.6
В	-17 800	29.5	9.9

 Site C outranks site B as C is at least as well performing than B on objective "Costs" (-6 700 against -17 800) and on objective "Turnover" (43.8 against 29.5).

Example

Site	Costs	Turnover	Work Cond.
	(in €)	(0-81)	(0-19)
G	-12 000	49.1	10.4
А	-35 000	70.6	10.2

Confirmed outranking situation

• Site G outranks site A, as G is at least as well performing than A on objective "Costs" (-12 000 against -35 000) and objective "Work Cond." (10.4 against 10.2).

Positively rejected outranking situation

Example

Site	Costs	Turnover	Work Cond.
	(in €)	(0-81)	(0-19)
F	-18 600	16.1	4.8
G	-12 000	49.1	10.4
С	-6 700	43.8	3.6

- Site *F* certainly does not outrank site *G* as *F* is less performing than *G* on all three objectives (unanimous discordance = Pareto dominance).
- Site F does not outrank site C as F is less performing than C on objective "Costs" (-18 600 against -6 700) and objective "Turnover" (16.1 against 43.8).

Example

Site	Costs	Turnover	Work Cond.
	(in €)	(0-81)	(0-19)
F	-18 600	16.1	4.8
Е	-34.800	49.1	15.7

As site F is less expensive than site E (-18 600 against -34 800), but also, at the same time less advantageous on objective "*Turnover*" (16.1 against 49.1) and objective "*Work Cond*." (4.8 against 15.7), one can neither confirm, nor reject this outranking situation.

This indeterminate situation is similar to a voting result where the number of votes in favour perfectly balance the number of votes in disfavour.

		9 / 46					10 / 46
	Recommender System	Conclusions	Introduction	Outranking	Theory	Recommender System	Conclusions
	00000			00000000	0000	00000	
	000			000	000	000	
)	00000			000	0000000	00000	

Taking into account the performances' imprecision

Example

Outranking 00000000

Site	Costs	Turnover	Work Cond.
	(in €)	(0-81)	(0-19)
В	-17 800	29.5	9.9
А	-35 000	70.6	10.2

Indeterminate outranking situation

- Same indeterminate situation is observed when comparing sites *B* and *A*. On the one hand, *B* is less expensive than site *A* (-17 800 against -35 000), but, on the other hand, *B* is less advantageous both on objective "*Turnover*" (29.5 against 70.6) and on objective "*Work Cond*." (9.9 against 10.2).
- Yet, are the grades 9.9 and 10.2 on the "Work. Cond" really different ?.

Definition (Discrimination thresholds)

The concept of discrimination threshold allows to take into account on each criterion (or objective) the:

- imprecision of our knowledge about present or past facts,
- uncertainty which necessarily affects our knowledge of the future,
- difficulties to quantify qualitative consequences.

Taking into account the performances' imprecision

Definition (Discrimination thresholds - continue)

- Performance discrimination thresholds allow us to model the fact that the numerical difference observed between the performances of two potential decision alternatives on a criterion (or objective) may be:
 - compatible with them being indifferent (indifference threshold)
 - warranting a clear preference of one over the other (preference threshold)
 - indicating a potential preference of one over the other (weak preference threshold),

Best office site for the SME

• Let us reconsider the performance table of our best office choice problem:

Site	Costs	Turnover	Work Cond.
В	-17 800 €	29.5	9.9
А	-17 800 € -35 000 €	70.6	10.2

- A difference of 0.5 points on objective "*Work Cond*." is still considered to compatible with an indifference judgment of the potential office sites,
- Hence, site *B* outranks site *A*, as the former is clearly less expensive (-17 800 against -35 000) and also more or less at least as good as *A* on objective "*Work Cond*." (9.9 against 10.2, difference smaller than the supposed indifference threshold).

				10/10	
Introduction	Outranking	Theory	Recommender System	Conclusions	Int
	00000000 000 000	0000 000 0000000	00000 000 00000		

Taking into account large performance differences

Definition (Veto situations)

• The concept of veto situation allows us to take into account on each criterion (or objective):

the presence of a negative performance difference large enough, to render insignificant the otherwise observed weighted majority of concordance of a preferential judgment.

• or, similarly:

the presence of a positive performance difference large enough, to render insignificant the otherwise warranted weighted minority of concordance of a preferential judgment.

Taking into account large performance differences

Definition (Veto thresholds)

Outranking

The concept of veto threshold allows us to model the fact that the performance difference observed between two potential decision alternatives on a criterion (or objective) may be:

- either, attesting the presence of a counter-performance large enough to put to doubt a significantly affirmed outranking situation;
 - or, attesting the presence of an out-performance large enough to put to doubt a significantly refuted outranking situation.

Revisiting the best office site problem

• Consider the performances of alternatives A and F with respect to the three objectives:

Site	Costs	Turnover	Work. Cond.
А	-35 000 €	70.6	10.2
F	-35 000 € -18 600 €	16.1	4.8

The outranking situation between A and F is indeterminate.

• The CEO of the SME considers that a performance difference of 50 points on the "Turnover" objective attests a veto situation.

Hence, the out-performance on objective "*Turnover*" of site A over site F (70.6 – 16.1 = 54.6 > 50.0 pts) resolves this indterminateness in favour of site A.

Similarly, site F does certainly not outrank site A, as the counter-performance on objective "*Turnover*" is so high that it renders insignificant the fact that F is less expensive (-18600 against -35000).

Outranking 000000000 000

Recommender 00000 000 Conclusions

Notation

- Let X be a finite set of p decision alternatives.
- Let N be a finite set of n > 1 criteria supporting an increasing real performance scale from 0 to M_i .
- Let $0 \leq q_i < p_i < v_i \leq M_i + \epsilon$ represent resp. the indifference, the preference, and the veto discrimination threshold observed on criterion *i*.
- Let w_i be the significance of criterion *i*.
- Let *W* be the sum of all criterion significances.
- Let x and y be two alternatives in X.
- Let x_i be the performance of x on criterion i

Performing marginally at least as good as

Each criterion *i* is characterising a double threshold order \ge_i on *A* in the following way:

$$r(\mathbf{x} \ge_i \mathbf{y}) = \begin{cases} +1 & \text{if } x_i + q_i \ge y_i \\ -1 & \text{if } x_i + p_i \le y_i \\ 0 & \text{otherwise.} \end{cases}$$
(1)

- +1 signifies that "x is *performing at least as good as y*" on criterion *i*,
- -1 signifies that "x is not performing at least as good as y" on criterion *i*.
 - 0 signifies that "it is *unclear* whether, on criterion *i*, *x* is performing at least as good as *y*".

Performing globally at least as good as

Each criterion *i* contributes the significance w_i of his "at least as good as" characterisation $r(\ge_i)$ to the characterisation of a global "at least as good as" relation $r(\ge)$ in the following way:

$$r(x \ge y) = \sum_{i \in F} \left[\frac{w_i}{W} \cdot r(x \ge_i y) \right]$$
(2)

 $1.0 \ge r(x \ge y) > 0.0$ signifies x is globally performing at least as good as y,

 $-1.0 \le r(x \ge y) < 0.0$ signifies that x is not globally performing at least as good as y,

 $r(x \ge y) = 0.0$ signifies that it is *unclear* whether x is globally performing at least as good as y.

Performing marginally and globally *less than*

Each criterion *i* is characterising a double threshold order $<_i$ (*less than*) on *A* in the following way:

$$r(\mathbf{x} <_i \mathbf{y}) = \begin{cases} +1 & \text{if } x_i + p_i \leq y_i \\ -1 & \text{if } x_i + q_i \geq y_i \\ 0 & \text{otherwise.} \end{cases}$$
(3)

And, the global less than relation (<) is defined as follows:

$$r(x < y) = \sum_{i \in F} \left[\frac{w_i}{W} \cdot r(x <_i y) \right]$$
(4)

Proposition

The global "less than" relation < is the dual (\geq) of the global "at least as good as" relation \geq .


Marginal considerably better or worse performing situations

We define a single threshold order, denoted \ll_i which represents *considerably less performing* situations as follows:

$$r(\mathbf{x} \ll \mathbf{i} \mathbf{y}) = \begin{cases} +1 & \text{if } x_i + v_i \leq y_i \\ -1 & \text{if } x_i - v_i \geq y_i \\ 0 & \text{otherwise.} \end{cases}$$
(5)

And a corresponding dual *considerablyly better performing* situation \gg_i characterised as:

$$r(\mathbf{x} \gg_i \mathbf{y}) = \begin{cases} +1 & \text{if } x_i - v_i \ge y_i \\ -1 & \text{if } x_i + v_i \le y_i \\ 0 & \text{otherwise.} \end{cases}$$
(6)

Global considerably better or considerably worse performing situations

A global veto, or counter-veto situation is defined as follows:

$$r(\mathbf{x} \ll \mathbf{y}) = \bigotimes_{i \in F} r(\mathbf{x} \ll_i \mathbf{y})$$
(7)

$$r(x \gg y) = \bigotimes_{i \in F} r(x \gg_i y)$$
(8)

where \bigotimes represents the epistemic polarising (Bisdorff 1997) or symmetric maximum (Grabisch et al. 2009) operator:

$$r \otimes r' = \begin{cases} \max(r, r') & \text{if } r \ge 0 \land r' \ge 0, \\ \min(r, r') & \text{if } r \le 0 \land r' \le 0, \\ 0 & \text{otherwise.} \end{cases}$$
(9)

Characterising veto and counter-veto situations

- 1. $r(x \ll y) = 1$ iff there exists a criterion *i* such that $r(x \ll_i y) = 1$ and there does not exist otherwise any criteria *j* such that $r(x \gg_j y) = 1$.
- 2. Conversely, $r(x \gg y) = 1$ iff there exists a criterion *i* such that $r(x \gg_i y) = 1$ and there does not exist otherwise any criteria *j* such that $r(x \ll_i y) = 1$.
- 3. $r(x \gg y) = 0$ if either we observe no very large performance differences or we observe at the same time, both a very large positive and a very large negative performance difference.

Lemma

 $r(\ll)^{-1}$ is identical to $r(\gg)$.

The bipolar outranking relation \succsim

From an epistemic point of view, we say that:

- 1. alternative x outranks alternative y, denoted $(x \succeq y)$, if
 - 1.1 a weighted majority of criteria validates a global outranking situation between *x* and *y*, and
 - 1.2 no considerable counter-performance is observed on a discordant criterion,
- 2. alternative x does not outrank alternative y, denoted $(x \not\gtrsim y)$, if
 - 2.1 a weighted majority of criteria invalidates a global outranking situation between x and y, and
 - 2.2 no considerably better performing situation is observed on a concordant criterion.

Polarising the global "at least as good as" characteristic

The bipolar-valued characteristic $r(\succeq)$ is defined as follows:

$$r(\mathbf{x} \succeq \mathbf{y}) = r(\mathbf{x} \ge \mathbf{y}) \otimes r(\mathbf{x} \ll_1 \mathbf{y}) \otimes \dots \otimes r(\mathbf{x} \ll_n \mathbf{y})$$

Properties:

- 1. $r(x \succeq y) = r(x \ge y)$ if no very considerable positive or negative performance differences between x and y are observed,
- 2. $r(x \succeq y) = 1.0$ if $r(x \ge y) \ge 0$ and $r(x \ggg y) = 1.0$,
- 3. $r(x \succeq y) = -1.0$ if $r(x \ge y) \le 0$ and $r(x \ll y) = 1.0$,

25 / 46

Coherence of the bipolar-valued outranking concept

Proposition

The dual $(\not\gtrsim)$ of the bipolar outranking relation \succeq is identical to the strict converse outranking \precsim relation.

Proof: We only have to check the case where $r(x \ll i y) \neq 0.0$ for all $i \in F$. If $r(x \ll y) \neq 0.0$:

$$\begin{aligned} r(x \not\gtrsim y) &= -r(x \not\gtrsim y) = -[r(x \ge y) \otimes -r(x \lll y)] \\ &= [-r(x \ge y) \otimes r(x \lll y)] \\ &= [r(x \ge y) \otimes -r(x \ggg y)] \\ &= [r(x < y) \otimes r(x \not\gg y)] = r(x \not\preccurlyeq y). \end{aligned}$$

Else, there exist conjointly two criteria *i* and *j* such that $r(x \ll i y) = 1.0$ and $r(x \gg i y) = 1.0$ such that $r(x \succeq y) = r(x \succeq y) = r(x \preccurlyeq y) = 0.0$.

Semantics of the bipolar valuation

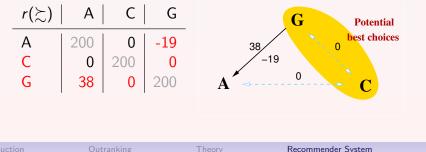
The valuation $r(\succeq)$ has following interpretation:

- r(≿ (x, y) = +1.0 signifies that the statement x ≿ y is certainly valid.
- r(≿ (x, y) = -1.0 signifies that the statement x ≿ y is certainely not valid.
- r(≿ (x, y) > 0 signifies that the statement x ≿ y is more valid than not valid.
- r(≿ (x, y) < 0 signifies that x ≿ y is more not-valid than valid.
- r(≿ (x, y) = 0 signifies that the statement x ≿ y is indeterminate.

The bipolar outranking (Condorcet) digraph

Definition

- We denote G̃(X, r(≿)) the bipolar-valued digraph modelled by r(≿) on the set of potential decision alternatives X.
- We denote G(X, ≿), the crisp digraph associated with G
 where we retain all arcs such that r(x ≿ y) > 0.
- G(X,≿) is called the Condorcet or median cut digraph associated with G̃(X, r(≿)).


Outranking Theory Recommender System Conclus 00000000 0000 00000 0000 000 0000 0000 0000 000 0000 0000 0000

The office site choice problem revisited

If we consider:

- 1. a preference threshold of 5 pts on objective "Turnover",
- an indifference and a preference threshold 0.1 pt (resp. 0.5 pt) on objective "Work. Cond.",
- 3. and no veto situations,

the global characteristic (multiplied by 200) of the bipolar outranking relation \succsim becomes:

The office site choice problem - continue

Comment

- The bipolar outranking characteristics show that:
 - 1. Site G is significantly at least as well performing as site A $(r(G \succeq A) = 38)$
 - 2. A is not significantly performing as well as site G $(r(A \succeq G) = -19),$
 - 3. No significant outranking situations may be confirmed, neither between sites G and C nor, between sites A and C.
- Hence G and C may be recommended as potential best choices.

Site	Costs	Turnover	Work Cond.
	(in €)	(0-81)	(0-19)
C	-6 700	43.8	3.6
G	-12 000	49.1	10.4

RuBIS : a best choice recommender system

- Traditionally, solving a best choice problem consists in finding the unique best decision alternative.
- In RUBIS, we adopt a modern recommender system's approach which shows a subset of alternatives which contains by construction the potential best alternative(s).
- If not reduced to a singleton, the actual "best choice", the recommendation has to be refined in a later decision process phase.

Pragmatic principles for a best choice recommendation (BCR)

\mathcal{P}_1 : Elimination for well motivated reasons.

Each eliminated alternative has to be outranked by at least one alternive in the BCR.

\mathcal{P}_2 : Minimal size.

The BCR must be as limited in cardinality as possible.

\mathcal{P}_3 : Efficient and informative.

The BCR must not contain a self-contained sub-recommendation.

\mathcal{P}_4 : Effectively better.

The BCR must not be ambiguous in the sense that it is both a best choice as well as a worst choice recommendation.

\mathcal{P}_5 : Maximally determined.

The BCR is, of all potential best choice recommendation, the most determined one in the sense of the characteristics of the bipolar outranking relation \succeq .

Translating the pragmatic principles in terme of choice qualification

- \mathcal{P}_1 : Elimination for well motivated reasons. The BCR is an outranking choice.
- \mathcal{P}_{2+3} : Minimal and stable recommendation. The BCR is a hyper-kernel.
 - \mathcal{P}_4 : Effectivity.

The BCR is a choice which is strictly more outranking than outranked.

 \mathcal{P}_5 : Maximal determination.

The BCR is the most determined one in the set of potential outranking hyper-kernels observed in a given bipolar outraking digraph $\widetilde{G}(X, r(\succeq))$.

Theorem

Every bipolar strict outranking digraph $G(X, r(\neq))$ admits at least one outranking and outranked hyper-kernel.

Qualification of a BCR in $\widetilde{G}(X, r(\succeq))$

Recommender System

Recommender System

00000

00000

Let Y be a non empty subset of X, called a choice in \widetilde{G} .

- Y is called outranking (resp. outranked) iff for all non retained alternative x there exists an alternative y retained such that r(y ≿ x) > 0.0 (resp. r(x ≿ y) > 0.0).
- Y is called independent iff for all $x \neq y$ in Y, we observe $r(x \succeq y) \leq 0.0$.
- Y is an outranking kernel (resp. outranked kernel) iff Y is an outranking (resp. outranked) and independent choice.
- Y is an outranking (resp. outranked) hyper-kernel iff Y is an outranking (resp. choice) containing chordless circuits of odd order p ≥ 1.

The RUBIS best choice recommendation (RBCR)

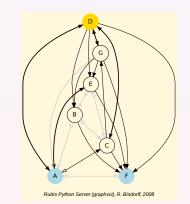
- An strictly outranking hyper-kernel of maximal determination, if it exists, renders a RBCR.
- A RBCR verifies the five pragmatic principles.
- A RBCR is a recommended subset of alternatives which contains the best alternative, provided that it exists.
- A RBCR must not be confused with the actual best choice retained by the decision maker.
- Being only a best choice recommendation, the RUBIS decision aid approach is only convenient in a progressive decision process.

Introduction	Outranking	Theory	Recommender System	Conclusions	Introduction	Outranking	Theory	Recommender System
	00000000 000 000	0000 000 0000000	00000 ●00 00000			00000000 000 000	0000 000 0000000	00000 000 00000

The complete, non-aggregated performance table

Performance discrimination thresholds

		Alternatives							
Criterion	Wi	A	В	C	D	E	F	G	
Costs	45	-35000	-17800	-6700	-14100	-34800	-18600	-12000	
Proximity	32	100	20	80	70	40	0	60	
Visibility	26	60	80	70	50	60	0	100	
Standing	23	100	10	0	30	90	70	20	
Work. Space	10	75	30	0	55	100	0	50	
Comfort	6	0	100	10	30	60	80	50	
Parking	3	90	30	100	90	70	0	80	
W	145								


	Thresho	olds (in po	ints or €)
Criterion	indiff.	pref.	veto
Costs	1000 €	2500 €	35 000 €
Proximity	10 pts	20	80
Visibility	10	20	80
Standing	10	20	80
Work. Space	10	20	80
Comfort	10	20	80
Parking	10	20	80

The RUBIS best choice recommendation

The bipolar outranking digraph

r(≿)	Chai 'A'	racteristi 'B'	ics multi 'C'	plied by 'D'	<i>W</i> = 1 'E'	45. 'F'	'G'
'A'	145	0	55	43	113	0	0
'B'	0	145	0	-81	0	99	-87
'C'	0	0	145	67	0	87	15
'D'	15	81	3	145	67	87	36
'E'	75	0	0	-15	145	43	-61
'F'	0	-9	-67	-87	-43	145	-87
'G'	0	133	-15	145	79	87	145

Choice	Determ. (%)	Qı ≿	$\stackrel{alificat}{\precsim}$	tion as indep.
{ <i>D</i> }	51.0	3	-87	145
$\{A, G\}$	50.0	55	0	0
$\{C, B, E\}$	50.0	15	-9	0
$\{A, F\}$	50.0	0	75	0

The RUBIS best choice recommendation – continue

Is alternative G outranking alternative A?

Comment

- The RUBIS best choice recommendation gives alternative {D}, a Condorcet winner, with a determination of 51% of the total significance of the criteria.
- A second and third potential BCR, a bit less determined, are given equivalently by the pair {A, G} and the triplet {C, B, E}.
- A potential worst choice is given by the pair {A, F}.

Criterion	Wi	G	A	G - A	sign.	veto
Costs	45	-12000	-35000	+23000	+45	-1
Proximity	32	60	100	-40	-32	-1
Visibility	26	100	60	+40	+26	-1
Standing	23	20	100	-80	-23	+1
Work Space	10	50	75	-25	-10	-1
Comfort	6	50	0	+50	+6	-1
Parking	3	80	90	-10	+3	-1
W	145			$r(G \succeq A) =$	0	

41/46 http://dcianalizable/action/performance/perform

Is alternative C outranking alternative A?

Criterion	Wi	C	A	C - A	sign.	veto
Costs	45	-6700	-35000	+28300	+45	-1
Proximity	32	80	100	-20	-32	-1
Visibility	26	70	60	+10	+26	-1
Standing	23	0	100	-100	-23	+1
Work Space	10	0	75	-75	-10	-1
Comfort	6	10	0	+10	+6	-1
Parking	3	100	90	+10	+3	-1
W	145			$r(C \succeq G) =$	0	

Is alternative D a significant Condorcet winner ?

Exercise(s)

- Alternative D is outranking all the other office site alternatives.
- 1. Analyse in detail the outranking situation between alternatives *D* and *C*.
- 2. What happens to the previous outranking situation, if a performance difference of 10 pts on the benefits criteria may not be anymore disregarded ?
- 3. Under what hypothesis may alternative C become a better alternative than D ?

ntroduction	Outranking	Theory	Recommender System	Conclusions	Introduction	Outranking	Theory	Recommender System	Conclusions
	00000000	0000	00000			00000000	0000	00000	
	000	0000000	00000			000	0000000	00000	

Conclusions

- Similarly to the MAVT, the outranking approach stresses the necessicity to follow a consistent and systematic approach for evaluating the performances of the potential decision alternatives.
- Similarly to the MAVT, the outranking approach allows to model costs and benefits with the help of multiple qualitative and/or quantitative performance criteria.
- Contrary to the MAVT, the outranking approach does not make the assumption that the evaluations on all the criteria must be commensurable in order to model global preferences.
- Contrary to the weighted scoring approaches, the significance of the criteria in the global outranking does not need to take into the type and scope of the marginal performance measurement scales.

Conclusions – continue

- By adopting a pairwise comparison approach à la Condorcet, we abandon the idea of complete comparability and transitivity of the preferences and receive in return the independence of all preferential statements from irrelevant alternatives (see Arrows impossibility theorem in Lecture 2).
- Taking into account performance discrimination thresholds allows to efficiently model imprecision, uncertainties and even very large positive and negative differences in the performance data.
- The bipolar characteristic valuation in [-1.0; +1.0] allows with the median value 0.0 to handle safely highly contradictory as well as missing data.
- **RUBIS** best choice recommendations like all modern recommender systems give a practical decision aid tool which avoids to force the hand of the decision maker with a definite unique normative result.